Publications by authors named "Nghiem Bui"

Huntington's disease (HD) is caused by the expansion of the polyglutamine tract expressed in the huntingtin protein. Data from patients show a strong negative correlation between CAG repeat size and age of disease onset. Recent studies in mixed background C57×CBA R6/2 mice suggest the inverse correlation observed in the human disease may not be replicated in some animal models of HD.

View Article and Find Full Text PDF

Variability and modification of the symptoms of Huntington’s disease (HD) are commonly observed in both patient populations and animal models of the disease. Utilizing a stable line of the R6/2 HD mouse model, the present study investigated the role of genetic background in the onset and severity of HD symptoms in a transgenic mouse. R6/2 congenic C57BL/6J and C57BL/6J×DBA/2J F1 (B6D2F1) mice were evaluated for survival and a number of behavioral phenotypes.

View Article and Find Full Text PDF

In the present study we report on the use of speed congenics to generate a C57BL/6J congenic line of HD-model R6/2 mice carrying 110 CAG repeats, which uniquely exhibits minimal intergenerational instability. We also report the first identification of the R6/2 transgene insertion site. The relatively stable line of 110 CAG R6/2 mice was characterized for the onset of behavioral impairments in motor, cognitive and psychiatric-related phenotypes as well as the progression of disease-related impairments from 4 to 10 weeks of age.

View Article and Find Full Text PDF

Introduction: The G-protein coupled muscarinic acetylcholine receptors, widely expressed in the CNS, have been implicated in fragile X syndrome (FXS). Recent studies have reported an overactive signaling through the muscarinic receptors in the Fmr1KO mouse model. Hence, it was hypothesized that reducing muscarinic signaling might modulate behavioral phenotypes in the Fmr1KO mice.

View Article and Find Full Text PDF

Muscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors (M1-M5), grouped together into two functional classes, based on their G protein interaction. Although ubiquitously expressed in the CNS, the M4 protein shows highest expression in the neostriatum, cortex, and hippocampus. Electrophysiological and biochemical studies have provided evidence for overactive mAChR signaling in the fragile X knock-out (Fmr1KO) mouse model, and this has been hypothesized to contribute to the phenotypes seen in Fmr1KO mice.

View Article and Find Full Text PDF

Rationale: Studies in the Fmr1 knockout (KO) mouse, a model of fragile X syndrome (FXS), suggest that excessive signaling through group I metabotropic glutamate receptors (mGluRs), comprised of subtypes mGluR1 and mGluR5, may play a role in the pathogenesis of FXS. Currently, no studies have assessed the effect of mGluR1 modulation on Fmr1 KO behavior, and there has not been an extensive behavioral analysis of mGluR5 manipulation in Fmr1 KO mice.

Objectives: The goals for this study were to determine if pharmacologic blockade of mGluR1 may affect Fmr1 KO behavior as well as to expand on the current literature regarding pharmacologic blockade of mGluR5 on Fmr1 KO behavior.

View Article and Find Full Text PDF

Introduction: Genetic heterogeneity likely contributes to variability in the symptoms among individuals with fragile X syndrome (FXS). Studies in the Fmr1 knockout (KO) mouse model for FXS suggest that excessive signaling through group I metabotropic glutamate receptors (Gp1 mGluRs), comprised of subtypes mGluR1 and mGluR5, may play a role. Hence, Gp1 mGluRs may act as modifiers of FXS.

View Article and Find Full Text PDF

Rationale: Muscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors, widely expressed in the CNS. Electrophysiological and molecular studies have provided evidence for overactive M1 receptor signaling in the fragile X knockout (Fmr1 KO) mouse model, suggesting the involvement of the M1 receptors in fragile X syndrome. Overactive signaling through the M1 receptor has been hypothesized to contribute to the phenotypes seen in fragile X mice.

View Article and Find Full Text PDF

Rationale: An increasing number of investigators utilize the marble-burying assay despite the paucity of information available regarding what underlies the behavior.

Objectives: We tested the possibility that a genetic component underlies marble burying in mice and if there is a genetic correlation with other anxiety-like traits. Since findings reported in the literature indicate that marble-burying behavior reflects an anxiety-like response, we explored the assumption that the novel nature of a marble induces this anxiety.

View Article and Find Full Text PDF