Angew Chem Int Ed Engl
December 2024
Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT) polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers, and typically suffer from prolonged reaction times, extended induction periods, and higher dispersities.
View Article and Find Full Text PDFChemical recycling of polymers synthesized by atom transfer radical polymerization (ATRP) typically requires high temperatures (i.e., 170 °C) to operate effectively, not only consuming unnecessary energy but also compromising depolymerization yields due to unavoidable end-group deterioration.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) have emerged as promising carriers to efficiently transport mRNA into cells for protein translation, as seen with the mRNA vaccines used against COVID-19. However, they contain a widely used polymer - poly(ethylene glycol) (PEG) - which lacks the functionality to be easily modified (which could effectively control the physicochemical properties of the LNPs such as its charge), and is also known to be immunogenic. Thus, it is desirable to explore alternative polymers which can replace the PEG component in mRNA LNP vaccines and therapeutics, while still maintaining their efficacy.
View Article and Find Full Text PDFWhile oxygen-tolerant strategies have been overwhelmingly developed for controlled radical polymerizations, the low radical concentrations typically required for high monomer recovery render oxygen-tolerant solution depolymerizations particularly challenging. Here, an open-air atom transfer radical polymerization (ATRP) depolymerization is presented, whereby a small amount of a volatile cosolvent is introduced as a means to thoroughly remove oxygen. Ultrafast depolymerization (i.
View Article and Find Full Text PDFThermal solution depolymerization is a promising low-temperature chemical recycling strategy enabling high monomer recovery from polymers made by controlled radical polymerization. However, current methodologies predominantly focus on the depolymerization of monofunctional polymers, limiting the material scope and depolymerization pathways. Herein, we report the depolymerization of telechelic polymers synthesized by RAFT polymerization.
View Article and Find Full Text PDFThe synthesis of multiblock copolymers has emerged as an efficient tool to not only reveal the optimal way to access complex structures and investigate polymer properties but also to ascertain the end-group fidelity of a given polymerization methodology. Although reversible addition-fragmentation chain-transfer (RAFT) polymerization is arguably the most dominant strategy employed, its success is often hampered by the unavoidable and excessive use of radical initiators which results in increased termination and loss of end-group fidelity. In this work, we employ acid in RAFT polymerization to enhance the synthesis of multiblock copolymers.
View Article and Find Full Text PDFChemical recycling of polymers is one of the biggest challenges in materials science. Recently, remarkable achievements have been made by utilizing polymers prepared by controlled radical polymerization to trigger low-temperature depolymerization. However, in the case of atom transfer radical polymerization (ATRP), depolymerization has nearly exclusively focused on chlorine-terminated polymers, even though the overwhelming majority of polymeric materials synthesized with this method possess a bromine end-group.
View Article and Find Full Text PDFDepolymerization is potentially a highly advantageous method of recycling plastic waste which could move the world closer towards a truly circular polymer economy. However, depolymerization remains challenging for many polymers with all-carbon backbones. Fundamental understanding and consideration of both the kinetics and thermodynamics are essential in order to develop effective new depolymerization systems that could overcome this problem, as the feasibility of monomer generation can be drastically altered by tuning the reaction conditions.
View Article and Find Full Text PDFAlthough dispersity has been demonstrated to be instrumental in determining many polymer properties, current synthetic strategies predominantly focus on tailoring the dispersity of linear polymers. In contrast, controlling the primary chain dispersity in network polymers is much more challenging, in part due to the complex nature of the reactions, which has limited the exploration of properties and applications. Here, a one-step method to prepare networks with precisely tuned primary chain dispersity is presented.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2023
A photocatalytic RAFT-controlled radical depolymerization method is introduced for precisely conferring temporal control under visible light irradiation. By regulating the deactivation of the depropagating chains and suppressing thermal initiation, an excellent temporal control was enabled, exemplified by several consecutive "on" and "off" cycles. Minimal, if any, depolymerization could be observed during the dark periods while the polymer chain-ends could be efficiently re-activated and continue to depropagate upon re-exposure to light.
View Article and Find Full Text PDFA photocatalytic ATRP depolymerization is introduced that significantly suppresses the reaction temperature from 170 to 100 °C while enabling temporal regulation. In the presence of low-toxicity iron-based catalysts and under visible light irradiation, near-quantitative monomer recovery could be achieved (up to 90%), albeit with minimal temporal control. By employing ppm concentrations of either FeCl or FeCl, the depolymerization during the dark periods could be completely eliminated, thus enabling temporal control and the possibility to modulate the rate by simply turning the light "on" and "off".
View Article and Find Full Text PDFThermal RAFT depolymerization has recently emerged as a promising methodology for the chemical recycling of polymers. However, while much attention has been given to the regeneration of monomers, the fate of the RAFT end-group after depolymerization has been unexplored. Herein, we identify the dominant small molecules derived from the RAFT end-group of polymethacrylates.
View Article and Find Full Text PDFAlthough controlled radical polymerization is an excellent tool to make precision polymeric materials, reversal of the process to retrieve the starting monomer is far less explored despite the significance of chemical recycling. Here, we investigate the bulk depolymerization of RAFT and ATRP-synthesized polymers under identical conditions. RAFT-synthesized polymers undergo a relatively low-temperature solvent-free depolymerization back to monomer thanks to the partial in situ transformation of the RAFT end-group to macromonomer.
View Article and Find Full Text PDFControlled polymerization methods are well-established synthetic protocols for the design and preparation of polymeric materials with a high degree of precision over molar mass and architecture. Exciting recent work has shown that the high end-group fidelity and/or functionality inherent in these techniques can enable new routes to depolymerization under relatively mild conditions. Converting polymers back to pure monomers by depolymerization is a potential solution to the environmental and ecological concerns associated with the ultimate fate of polymers.
View Article and Find Full Text PDFEmploying monoclonal antibodies to target vaccine antigens to different immune cells within lymph nodes where adaptive immunity is initiated can provide a mechanism to fine-tune the magnitude or the quality of immune responses. However, studying the effects of different targeting antibodies head-to-head is challenging due to the lack of a feasible method that allows rapid screening of multiple antibodies for their impact on immunogenicity. Here self-assembling ferritin nanoparticles are prepared that co-display vaccine antigens and the Fc-binding domain of Staphylococcal protein A, allowing rapid attachment of soluble antibodies to the nanoparticle surface.
View Article and Find Full Text PDFRetrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature ( 100 °C).
View Article and Find Full Text PDFIn controlled radical polymerization, oxygen is typically regarded as an undesirable component resulting in terminated polymer chains, deactivated catalysts, and subsequent cessation of the polymerization. Here, we report an unusual atom transfer radical polymerization whereby oxygen favors the polymerization by triggering the transformation of CuBr/L to reactive superoxido species at room temperature. Through a superoxido ARGET-ATRP mechanism, an order of magnitude faster polymerization rate and a rapid and complete initiator consumption can be achieved as opposed to when unoxidized CuBr/L was instead employed.
View Article and Find Full Text PDFReversing reversible deactivation radical polymerization (RDRP) to regenerate the original monomer is an attractive prospect for both fundamental research and industry. However, current depolymerization strategies are often applied to highly heat-tolerant polymers with a specific end-group and can only be performed in a specific solvent. Herein, we depolymerize a variety of poly(methyl methacrylate) materials made by reversible addition-fragmentation chain-transfer (RAFT) polymerization and terminated by various end groups (dithiobenzoate, trithiocarbonate, and pyrazole carbodithioate).
View Article and Find Full Text PDFHumans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies.
View Article and Find Full Text PDFIonizable cationic lipids play a critical role in developing new gene therapies for various biomedical applications, including COVID-19 vaccines. However, it remains unclear whether the formulation of lipid nanoparticles (LNPs) using DLin-MC3-DMA, an optimized ionizable lipid clinically used for small interfering RNA (siRNA) therapy, also facilitates high liver-selective transfection of other gene therapies such as plasmid DNA (pDNA). Here we report the first investigation into pDNA transfection efficiency in different mouse organs after intramuscular and intravenous administration of lipid nanoparticles (LNPs) where DLin-MC3-DMA, DLin-KC2-DMA or DODAP are used as the ionizable cationic lipid component of the LNP.
View Article and Find Full Text PDFThe ability to reverse controlled radical polymerization and regenerate the monomer would be highly beneficial for both fundamental research and applications, yet this has remained very challenging to achieve. Herein, we report a near-quantitative (up to 92%) and catalyst-free depolymerization of various linear, bulky, cross-linked, and functional polymethacrylates made by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Key to our approach is to exploit the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C.
View Article and Find Full Text PDFControlled polymerizations have enabled the production of nanostructured materials with different shapes, each exhibiting distinct properties. Despite the importance of shape, current morphological transformation strategies are limited in polymer scope, alter the chemical structure, require high temperatures, and are fairly tedious. Herein we present a rapid and versatile morphological transformation strategy that operates at room temperature and does not impair the chemical structure of the constituent polymers.
View Article and Find Full Text PDFCu(0)-reversible deactivation radical polymerization (RDRP) is a versatile polymerization tool, providing rapid access to well-defined polymers while utilizing mild reaction conditions and low catalyst loadings. However, thus far, this method has not been applied to tailor dispersity, a key parameter that determines the physical properties and applications of polymeric materials. Here, we report a simple to perform method, whereby Cu(0)-RDRP can systematically control polymer dispersity ( = 1.
View Article and Find Full Text PDFThe dispersity () of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor of both homo and block copolymers in aqueous atom transfer radical polymerization.
View Article and Find Full Text PDF