Publications by authors named "Ngan T B Nguyen"

Monoclonal antibodies (mAbs) eliminate cancer cells via various effector mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are influenced by the N-glycan structures on the Fc region of mAbs. Manipulating these glycan structures on mAbs allows for optimization of therapeutic benefits associated with effector functions. Traditional approaches such as gene deletion or overexpression often lead to only all-or-nothing changes in gene expression and fail to modulate the expression of multiple genes at defined ratios and levels.

View Article and Find Full Text PDF

Background: Two-armed FabscFv-Fc is a favoured bispecific antibody (BsAb) format due to its advantages of the conventional IgG structure. Production of FabscFv-Fc requires expression of three polypeptide chains, one light chain (LC), one heavy chain (HC) and a scFv fused to the Fc (scFvFc) at optimal ratios.

Methods: We designed a set of internal ribosome entry site (IRES)-mediated multi-cistronic vectors tailoring to various expression ratios of the three polypeptides to study how the chain ratios affect the FabscFv-Fc production.

View Article and Find Full Text PDF

Therapeutic antibodies are decorated with complex-type N-glycans that significantly affect their biodistribution and bioactivity. The N-glycan structures on antibodies are incompletely processed in wild-type CHO cells due to their limited glycosylation capacity. To improve N-glycan processing, glycosyltransferase genes have been traditionally overexpressed in CHO cells to engineer the cellular N-glycosylation pathway by using random integration, which is often associated with large clonal variations in gene expression levels.

View Article and Find Full Text PDF