Publications by authors named "Ngai Ling Ma"

Poor pharmacokinetic and toxicity profiles are major reasons for the low rate of advancing lead drug candidates into efficacy studies. The In-silico prediction of primary pharmacokinetic and toxicity properties in the drug discovery and development process can be used as guidance in the design of candidates. In-silico parameters can also be used to choose suitable compounds for in-vivo testing thereby reducing the number of animals used in experiments.

View Article and Find Full Text PDF

Pyridone 1 was identified from a high-throughput cell-based phenotypic screen against Mycobacterium tuberculosis (Mtb) including multi-drug resistant tuberculosis (MDR-TB) as a novel anti-TB agent and subsequently optimized series using cell-based Mtb assay. Preliminary structure activity relationship on the isobutyl group with higher cycloalkyl groups at 6-position of pyridone ring has enabled us to significant improvement of potency against Mtb. The lead compound 30j, a dimethylcyclohexyl group on the 6-position of the pyridone, displayed desirable in vitro potency against both drug sensitive and multi-drug resistant TB clinical isolates.

View Article and Find Full Text PDF

The one-dimensional model of Hann et al. (JChem Inf Comput Sci 41(3):856–864) has been extended to include reverse binding and wrap-around interaction modes between the protein and ligand to explore the complete combinatorial matrix of molecular recognition. The cumulative distribution function of the Maxwell–Boltzmann distribution has been used to calculate the probability of measuring the sensitivity of the interactions as the asymptotic limits of the distribution better describe the behavior of the interactions under experimental conditions.

View Article and Find Full Text PDF

Indole-2-carboxamides have been identified as a promising class of antituberculosis agents from phenotypic screening against mycobacteria. One of the hits, indole-2-carboxamide analog (1), had low micromolar potency against Mycobacterium tuberculosis (Mtb), high mouse liver microsomal clearance, and low aqueous solubility. Structure-activity relationship studies revealed that attaching alkyl groups to the cyclohexyl ring significantly improved Mtb activity but reduced solubility.

View Article and Find Full Text PDF

Growing evidence suggests that the presence of a subpopulation of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria is responsible for the prolonged duration of tuberculosis treatment. The discovery of new antitubercular agents active against this subpopulation may help in developing new strategies to shorten the time of tuberculosis therapy. Recently, the maintenance of a low level of bacterial respiration was shown to be a point of metabolic vulnerability in Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Drug resistance against dihydrofolate reductase (DHFR) inhibitors-such as pyrimethamine (PM)-has now spread to almost all regions where malaria is endemic, rendering antifolate-based malaria treatments highly ineffective. We have previously shown that the di-amino quinazoline QN254 [5-chloro-N'6'-(2,5-dimethoxy-benzyl)-quinazoline-2,4,6-triamine] is active against the highly PM-resistant Plasmodium falciparum V1S strain, suggesting that QN254 could be used to treat malaria in regions with a high prevalence of antifolate resistance. Here, we further demonstrate that QN254 is highly active against Plasmodium falciparum clinical isolates, displaying various levels of antifolate drug resistance, and we provide biochemical and structural evidence that QN254 binds and inhibits the function of both the wild-type and the quadruple-mutant (V1S) forms of the DHFR enzyme.

View Article and Find Full Text PDF

The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion.

View Article and Find Full Text PDF

An in silico target prediction protocol for antitubercular (antiTB) compounds has been proposed in this work. This protocol is the extension of a recently published 'domain fishing model' (DFM), validating its predicted targets on a set of 42 common antitubercular drugs. For the 23 antiTB compounds of the set which are directly linked to targets (see text for definition), the DFM exhibited a very good target prediction accuracy of 95%.

View Article and Find Full Text PDF

The incidence of dengue fever epidemics has increased dramatically over the last few decades. However, no vaccine or antiviral therapies are available. Therefore, the need for safe and effective antiviral drugs has become imperative.

View Article and Find Full Text PDF

To aid the creation of novel antituberculosis (antiTB) compounds, Bayesian models were derived and validated on a data set of 3779 compounds which have been measured for minimum inhibitory concentration (MIC) in the Mycobacterium tuberculosis H37Rv strain. The model development and validation involved exploring six different training sets and 15 fingerprint types which resulted in a total of 90 models, with active compounds defined as those with MIC < 5 microM. The best model was derived using Extended Class Fingerprints of maximum diameter 12 (ECFP_12) and a few global descriptors on a training set derived using Functional Class Fingerprints of maximum diameter 4 (FCFP_4).

View Article and Find Full Text PDF

Objectives: The aim of this study was to determine the in vitro activity of lipiarmycin against drug-resistant strains of Mycobacterium tuberculosis (MTB) and to establish the resistance mechanism of MTB against lipiarmycin using genetic approaches.

Methods: MIC values were measured against a panel of drug-resistant strains of MTB using the broth microdilution method. Spontaneous lipiarmycin-resistant mutants of MTB were tested for cross-resistance to standard anti-TB drugs, and their rpoB and rpoC genes were sequenced to identify mutations.

View Article and Find Full Text PDF

A recombinant form of yellow fever virus (YFV) NS3 protease, linked via a nonapeptide to the minimal NS2B co-factor sequence (CF40-gly-NS3pro190), was expressed in Escherichia coli and shown to be catalytically active. It efficiently cleaved the fluorogenic tetrapeptide substrate Bz-norleucine-lysine-arginine-arginine-AMC, which was previously optimized for dengue virus NS2B/3 protease. A series of small peptidic inhibitors based on this substrate sequence readily inhibited its enzymic activity.

View Article and Find Full Text PDF

With the incidence of dengue fever increasing all over the world, there is an urgent need for therapies. While drug discovery for any disease is a long and difficult process with uncertain success, dengue fever poses an additional complication in that most of the target patient population is young and lives in developing countries with very limited health care budgets. Recent progress in drug discovery for dengue and an analysis of approaches toward hepatitis C virus (HCV) therapeutics suggest that NS5 polymerase is the most promising target for dengue.

View Article and Find Full Text PDF

A series of inhibitors related to the benzoyl-norleucine-lysine-arginine-arginine (Bz-nKRR) tetrapeptide aldehyde was synthesized. When evaluated against the West Nile virus (WNV) NS3 protease, the measured IC(50) ranges from approximately 1 to 200 microM. Concurrently, a modeling study using the recently published crystal structure of the West Nile NS3/NS2B protease complex (pdb code 2FP7) was conducted.

View Article and Find Full Text PDF

With the aim of discovering potent and selective dengue NS3 protease inhibitors, we systematically synthesized and evaluated a series of tetrapeptide aldehydes based on lead aldehyde 1 (Bz-Nle-Lys-Arg-Arg-H, K(i)=5.8 microM). In general, we observe that interactions of P(2) side chain are more important than P(1) followed by P(3) and P(4).

View Article and Find Full Text PDF

The dissociation of prototypical metal-cationized amino acid complexes, namely, alkaliated alanine ([Ala+M]+, M+ = Li+, Na+, K+), was studied by energy-resolved tandem mass spectrometry with an ion-trap mass analyzer and by density functional theory. Dissociation leads to formation of fragment ions arising from the loss of small neutrals, such as H2O, CO, NH3, (CO+NH3), and the formation of Na+/K+. The order of appearance threshold voltages for different dissociation pathways determined experimentally is consistent with the order of critical energies (energy barriers) obtained theoretically, and this provides the necessary confidence in both experimental and theoretical results.

View Article and Find Full Text PDF

To understand the cation-pi interaction in aromatic amino acids and peptides, the binding of M(+) (where M(+) = Li(+), Na(+), and K(+)) to phenylalanine (Phe) is studied at the best level of density functional theory reported so far. The different modes of M(+) binding show the same order of binding affinity (Li(+)>Na(+)>K(+)), in the approximate ratio of 2.2:1.

View Article and Find Full Text PDF

In this study the theoretical Gaussian-2 K(+)/Na(+) binding affinities (enthalpies) at 0 K (in kJ mol(-1)) for six amides in the order: formamide (109.2/138.5) < N-methylformamide (117.

View Article and Find Full Text PDF

Abundant Ag(I)-cationized complexes of 13 polyaromatic hydrocarbons (PAHs), [Ag+PAH](+) and [Ag+2(PAH)](+), were readily generated by electrospray ionization (ESI). In-source collision-induced dissociation (CID) of the [Ag+2(PAH)](+) complex yielded the monomer complex [Ag+PAH](+), which fragmented further to yield the radical molecular ion [PAH](+.).

View Article and Find Full Text PDF

The potassium cation affinities (PCAs) of 136 ligands (20 classes) in the gas phase were established by hybrid density functional theory calculations (B3-LYP with the 6-311+G(3df,2p) basis set). For these 136 ligands, 70 experimental values are available for comparison. Except for five specific PCA values-those of phenylalanine, cytosine, guanine, adenine (kinetic-method measurement), and Me(2)SO (by high-pressure mass spectrometric equilibrium measurement)-our theoretical estimates and the experimental affinities are in excellent agreement (mean absolute deviation (MAD) of 4.

View Article and Find Full Text PDF

By combining Monte Carlo conformational search technique with high-level density functional calculations, the geometry and energetics of K(+) interaction with glycylglycine (GG) and alanylalanine (AA) were obtained for the first time. The most stable K(+)-GG and K(+)-AA complexes are in the charge-solvated (CS) form with K(+) bound to the carbonyl oxygens of the peptide backbone, and the estimated 0 K binding affinities (DeltaH(0)) are 152 and 157 kJ mol(-1), respectively. The K(+) ion is in close alignment with the molecular dipole moment vector of the bound ligand, that is, electrostatic ion-dipole interaction is the key stabilizing factor in these complexes.

View Article and Find Full Text PDF

Using a refined Gaussian-3 (G3) protocol, the highest level of ab initio calculations reported so far, we have established the Li+ cation binding enthalpy (affinity) at 0 K (in kJ mol-1) for formamide (195.7), N-methylformamide (209.2), N,N'-dimethylformamide (220.

View Article and Find Full Text PDF

Significantly higher in energy (24 kJ mol ) than the triplet ground state ( Σ ) is the Δ state of ethenedithione (S=C=C=S), in agreement with Hund's rule. This result was obtained from high-level ab initio calculations. Thus, ethenedithione cannot, as had been proposed, be considered as the first example for the violation of Hund's rule in an equilibrium structure.

View Article and Find Full Text PDF