Diabetes and cardiovascular disease are interlinked chronic conditions that necessitate continuous and precise monitoring of physiological and environmental parameters to prevent complications. Non-invasive monitoring technologies have garnered significant interest due to their potential to alleviate the current burden of diabetes and cardiovascular disease management. However, these technologies face limitations in accuracy and reliability due to interferences from physiological and environmental factors.
View Article and Find Full Text PDFThe pursuit of materials that offer both wear comfort and protection for functional and protective clothing has led to the exploration of weft-knitted spacer structures. Traditional cushioning materials such as spacer fabrics and laminated foam often suffer from deformation under compression stresses, thus compromising their protective properties This study investigates the enhancement of the force absorption, stress-strain, and thermal properties of weft-knitted spacer fabrics with inlays. Surface yarns with superior stretchability and thermal properties are used and combined with elastic yarns in various patterns to fabricate nine different inlay samples.
View Article and Find Full Text PDFTo investigate the effect of contoured insoles constructed of different insole materials, including Nora Lunalastik EVA, Nora Lunalight A fresh, Pe-Lite, and PORON Medical 4708 with Langer Biomechanics longitudinal PPT arch pads on offloading plantar pressure on the foot of the elderly with Type 1 or 2 diabetes during gait. Twenty-two elderly with Type 1 or 2 diabetes participated in the study. Their plantar pressure was measured by using an insole measurement system, while the participants walked 10 m in their bare feet or used each experimental insole in random order.
View Article and Find Full Text PDFInsoles provide resistance to ground reaction forces and comfort during walking. In this study, a novel weft-knitted spacer fabric structure with inlays for insoles is proposed which not only absorbs shock and resists pressure, but also allows heat dissipation for enhanced thermal comfort. The results show that the inlay density and spacer yarn increase compression resistance and reduce impact forces.
View Article and Find Full Text PDF