Golden camellia is defined as a species of the Camellia genus with yellow flowers, which have long been used as a medicine, food, and cosmetic in many Asian countries. To date, more than 50 golden camellia species are considered endemic in Vietnam; however, more information is needed about its chemical constituents and biological activity. This work aims to unveil the potential of Camellia tienii Ninh, a golden camellia species, as an herbal beverage by examining the presence and abundance of chemical components in flowers and leaves.
View Article and Find Full Text PDFIn rice (Oryza sativa L.), rice bran contains valuable nutritional constituents, such as high unsaturated fat content, tocotrienols, inositol, γ-oryzanol, and phytosterols, all of which are of nutritional and pharmaceuticals interest. There is now a rising market demand for rice bran oil, which makes research into their content and fatty acid profile an area of interest.
View Article and Find Full Text PDFPhosphorus is an essential nutrient for plants that is often in short supply. In rice (Oryza sativa L.), inorganic phosphate (P) deficiency leads to various physiological disorders that consequently affect plant productivity.
View Article and Find Full Text PDFThe crucial role of phosphate (Pi) for plant alongside the expected depletion of non-renewable phosphate rock have created an urgent need for phosphate-efficient rice varieties. In this study, 157 greenhouse-grown Vietnamese rice landraces were treated under Pi-deficient conditions to discover the genotypic variation among biochemical traits, including relative efficiency of phosphorus use (REP), relative root to shoot weight ratio (RRSR), relative physiological phosphate use efficiency (RPPUE), and relative phosphate uptake efficiency (RPUpE). Plants were grown in Yoshida nutrient media with either a full (320 μM) or a low Pi supply (10 μM) over six weeks.
View Article and Find Full Text PDFArabidopsis hairy roots were used to produce human gastric lipase. When treated with 2,4-D, the hairy roots developed into thick organs that produced more protein than untreated roots. This was first assessed using green fluorescent protein-producing root lines from which the protein diffused into the culture medium.
View Article and Find Full Text PDF