Background: Glioblastoma stem cells (GSC) have been extensively recognized as a plausible cause of glioblastoma resistance to therapy and recurrence resulting in high glioblastoma mortality. Abnormalities in the DNA repair pathways might be responsible for the inability of the currently used chemotherapeutics to eliminate the (GSC) subpopulation.
Methods: In this work, we compared the expression of sixty DNA repair related genes between primary glioblastoma cell cultures and the glioblastoma enriched stem cell primary cultures.
The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene.
View Article and Find Full Text PDFMalignant gliomas are among the rarest brain tumours, and they have the worst prognosis. Grade IV astrocytoma, known as glioblastoma multiforme (GBM), is a highly lethal disease where the standard therapies of surgery, followed by radiation and chemotherapy, cannot significantly prolong the life expectancy of the patients. Tumour recurrence shows more aggressive form compared to the primary tumour, and results in patient survival from 12 to 15 months only.
View Article and Find Full Text PDFBackground: Patient-derived glioblastoma (GBM) stem-like cells (GSCs) represent a valuable model for basic and therapeutic research. GSCs are usually propagated in serum-free Neural Basal medium supplemented with bFGF and EGF. Yet, the exact influence of these growth factors on GSCs is still unclear.
View Article and Find Full Text PDF