Publications by authors named "Neyvis Almora-Barrios"

The increasing use of Metal-Organic Frameworks (MOFs) in separation, catalysis, or storage is linked to the targeted modification of their composition or porosity metrics. While modification of pore shape and size necessarily implies the assembly of alternative nets, compositional changes often rely on postsynthetic modification adapted to the functionalization or exchange of the organic linker or the modification of the inorganic cluster by metal exchange methods. We describe an alternative methodology that enables the integration of both types of modification, structural and compositional, in titanium MOFs by metal exchange reaction of the heterometallic cluster TiCa.

View Article and Find Full Text PDF

The combination of compositional versatility and topological diversity for the integration of electroactive species into high-porosity molecular architectures is perhaps one of the main appeals of metal-organic frameworks (MOFs) in the field of electrocatalysis. This premise has attracted much interest in recent years, and the results generated have also revealed one of the main limitations of molecular materials in this context: low stability under electrocatalytic conditions. Using zirconium MOFs as a starting point, in this work, we use this stability as a variable to discriminate between the most suitable electrocatalytic reaction and specific topologies within this family.

View Article and Find Full Text PDF
Article Synopsis
  • - Metal-Organic Frameworks (MOFs) can be modified with amines to improve CO capture, potentially replacing traditional aqueous amine solutions.
  • - The study suggests using heterobimetallic TiCa clusters instead of neutral metal vacancies for binding, allowing the framework to change its structure to better accommodate triethylenetetramine.
  • - This adaptability creates stable bis-coordinate adducts in water and opens the door for designing larger MOFs that enhance CO diffusion and aid in decarbonization efforts.
View Article and Find Full Text PDF

Changing the perception of defects as imperfections in crystalline frameworks into correlated domains amenable to chemical control and targeted design might offer opportunities for the design of porous materials with superior performance or distinctive behavior in catalysis, separation, storage, or guest recognition. From a chemical standpoint, the establishment of synthetic protocols adapted to control the generation and growth of correlated disorder is crucial to consider defect engineering a practicable route towards adjusting framework function. By using UiO-66 as experimental platform, we systematically explored the framework chemical space of the corresponding defective materials.

View Article and Find Full Text PDF

Titanium-organic frameworks offer distinctive opportunities in the realm of metal-organic frameworks (MOFs) due to the integration of intrinsic photoactivity or redox versatility in porous architectures with ultrahigh stability. Unfortunately, the high polarizing power of Ti cations makes them prone to hydrolysis, thus preventing the systematic design of these types of frameworks. We illustrate the use of heterobimetallic cluster TiCa as a persistent building unit compatible with the isoreticular design of titanium frameworks.

View Article and Find Full Text PDF

Research on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry.

View Article and Find Full Text PDF

The value of covalent post-synthetic modification in expanding the chemistry and pore versatility of reticular solids is well documented. Here we use mesoporous crystals of the metal-organic framework (MOF) UiO-68-TZDC to demonstrate the value of tetrazine connectors for all-purpose inverse electron-demand Diels-Alder ligation chemistry. Our results suggest a positive effect of tetrazine reticulation over its reactivity for quantitative one-step functionalization with a broad scope of alkene or alkyne dienophiles into pyridazine and dihydropyridazine frameworks.

View Article and Find Full Text PDF

Following the synthesis of hydroxamate titanium-organic frameworks, we now extend these siderophore-type linkers to the assembly of the first titanium-organic polyhedra displaying permanent porosity. Mixed-linker versions of this molecular cage (cMUV-11) are also used to demonstrate the effect of pore chemistry in accessing high surface areas of near 1200 m·g.

View Article and Find Full Text PDF

Defect engineering is a valuable tool to tune the properties of metal-organic frameworks. However, defect chemistry remains still predominantly limited to UiO-type MOFs. We describe the preferential formation of missing cluster defects in heterometallic titanium-organic frameworks of the MUV-10 family when synthesised in sub-stoichiometric linker conditions.

View Article and Find Full Text PDF

The recognition of defect chemistry as a true synthetic tool for targeted creation of defects and controllable performance remains limited by the pool of frameworks explored. The value of defect engineering in controlling the properties of defective frameworks has been beautifully exemplified and largely demonstrated with UiO-type materials based on Zr(iv) nodes. However, titanium-organic frameworks remain largely unexplored in this context arguably due to the complex chemistry in solution of Ti(iv) and the difficulties in growing crystalline solids.

View Article and Find Full Text PDF

We introduce the first example of isoreticular titanium-organic frameworks, MUV-10 and MUV-12, to show how the different affinity of hard Ti(IV) and soft Ca(II) metal sites can be used to direct selective grafting of amines. This enables the combination of Lewis acid titanium centers and available -NH sites in two sizeable pores for cooperative cycloaddition of CO to epoxides at room temperature and atmospheric pressure. The selective grafting of molecules to heterometallic clusters adds up to the pool of methodologies available for controlling the positioning and distribution of chemical functions in precise positions of the framework required for definitive control of pore chemistry.

View Article and Find Full Text PDF

We report a crystalline supramolecular framework assembled by H-bonding interactions between covalently fused monomers equipped with two guanine-cytosine nucleobase pairs.

View Article and Find Full Text PDF

The use of Metal-Organic Frameworks as crystalline matrices for the synthesis of multiple component or multivariate solids by the combination of different linkers into a single material has emerged as a versatile route to tailor the properties of single-component phases or even access new functions. This approach is particularly relevant for Zr-MOFs due to the synthetic flexibility of this inorganic node. However, the majority of materials are isolated as polycrystalline solids, which are not ideal to decipher the spatial arrangement of parent and exchanged linkers for the formation of homogeneous structures or heterogeneous domains across the solid.

View Article and Find Full Text PDF

Zn-containing metal-organic frameworks have been used for the first time as heterogeneous catalysts in the amination of C-Cl bonds. The use of extended bis(pyrazolate) linkers can generate highly porous architectures, which favor the diffusion of amines to the confined spaces with respect to other imidazolate frameworks with narrower pore windows. The NZn nodes of the Zn-reticular framework show comparable activity to state-of-the-art homogeneous Zn amination catalysts, avoiding the use of basic conditions, precious metals, or other additives.

View Article and Find Full Text PDF

Reticular chemistry has boosted the design of thousands of metal and covalent organic frameworks for unlimited chemical compositions, structures, and sizable porosities. The ability to generate porous materials at will on the basis of geometrical design concepts is responsible for the rapid growth of the field and the increasing number of applications derived. Despite their promising features, the synthesis of targeted homo- and heterometallic titanium-organic frameworks amenable to these principles is relentlessly limited by the high reactivity of this metal in solution that impedes the controlled assembly of titanium molecular clusters.

View Article and Find Full Text PDF

Selective separation of enantiomers is a substantial challenge for the pharmaceutical industry. Chromatography on chiral stationary phases is the standard method, but at a very high cost for industrial-scale purification due to the high cost of the chiral stationary phases. Typically, these materials are poorly robust, expensive to manufacture, and often too specific for a single desired substrate, lacking desirable versatility across different chiral analytes.

View Article and Find Full Text PDF

The chemistry of metal-organic frameworks (MOFs) relies on the controlled linking of organic molecules and inorganic secondary building units to assemble an unlimited number of reticular frameworks. However, the design of porous solids with chemical stability still remains limited to carboxylate or azolate groups. There is a timely opportunity to develop new synthetic platforms that make use of unexplored metal binding groups to produce metal-linker joints with hydrolytic stability.

View Article and Find Full Text PDF

Most developments in the chemistry and applications of metal-organic frameworks (MOFs) have been made possible thanks to the value of reticular chemistry in guiding the unlimited combination of organic connectors and secondary building units (SBUs) into targeted architectures. However, the development of new titanium-frameworks still remains limited by the difficulties in controlling the formation of persistent Ti-SBUs with predetermined directionality amenable to the isoreticular approach. Here we report the synthesis of a mesoporous Ti-MOF displaying a MIL-100 topology.

View Article and Find Full Text PDF

Enzymatic catalysis is of great importance to the chemical industry. However, we are still scratching the surface of the potential of biocatalysis due to the limited operating range of enzymes in harsh environments or their low recyclability. The role of Metal-Organic Frameworks (MOFs) as active supports to help overcome these limitations, mainly by immobilization and stabilization of enzymes, is rapidly expanding.

View Article and Find Full Text PDF

Conductive metal-organic frameworks are opening new perspectives for the use of these porous materials for applications traditionally limited to more classical inorganic materials, such as their integration into electronic devices. This has enabled the development of chemiresistive sensors capable of transducing the presence of specific guests into an electrical response with good selectivity and sensitivity. By combining experimental data with computational modelling, a possible origin for the underlying mechanism of this phenomenon in ultrathin films (ca.

View Article and Find Full Text PDF

We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi-gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization.

View Article and Find Full Text PDF

Though generally considered insulating, recent progress on the discovery of conductive porous metal-organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal-organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high-quality films with fine control over their orientation, crystallinity, homogeneity, and thickness.

View Article and Find Full Text PDF

The shape control of nanoparticles constitutes one of the main challenges in today's nanotechnology. The synthetic procedures are based on trial-and-error methods and are difficult to rationalize as many ingredients are typically used. For instance, concave nanoparticles exhibiting high-index facets can be obtained from Pt with different HCl treatments.

View Article and Find Full Text PDF

Many common density functional theory methods used in the study of adsorption on metals lack dispersion contributions. Formulations like the random phase approximations would mitigate this error, but they are computationally too expensive. Therefore, semiempiric treatments based on dispersion coefficients turn out to be a practical solution.

View Article and Find Full Text PDF

Site modification and isolation through selective poisoning comprise an effective strategy to enhance the selectivity of palladium catalysts in the partial hydrogenation of triple bonds in acetylenic compounds. The recent emergence of supported hybrid materials matching the stereo- and chemoselectivity of the classical Lindlar catalyst holds promise to revolutionize palladium-catalyzed hydrogenations, and will benefit from an in-depth understanding of these new materials. In this work, we compare the performance of bare, lead-poisoned, and ligand-modified palladium catalysts in the hydrogenation of diverse alkynes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0oot8fa2edgkcomss668jvs0k8coest0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once