Publications by authors named "Neyts Kristiaan"

Anti-Brownian electrokinetic trapping enables the confinement of individual nanoparticles in liquids by applying electric fields. This technique facilitates the long-term observation of nanoscopic objects, allowing for detailed studies of their physical, chemical, and biomolecular properties. However, this method has been largely restricted to nanoparticles that can be visualized by photoluminescence.

View Article and Find Full Text PDF

Blue phase liquid crystals (BPLCs) are chiral self-assembled three-dimensional (3D) periodic structures which have attracted a lot of attention due to their electro-optical properties, relevant for tunable soft photonic crystals and fast-response displays. However, to realize this application potential, controlling the BPLC alignment at the surfaces is crucial, and one way to obtain the desired alignment is by photoalignment patterning. In this article, monodomain BPLC samples with controlled orientation are achieved by imposing different alignment patterns that have a periodicity that is compatible with the size of the BPLC unit cell, using two-step photoalignment with polarized ultraviolet (UV) light.

View Article and Find Full Text PDF

Chiral liquid crystals (CLCs) self-assemble into a helical structure and can efficiently reflect circularly polarized light with corresponding handedness. Utilizing a curved glass substrate and polymerization of photoaligned CLCs, the operation of focusing and diffraction of incident light can be performed efficiently by a single component. When focusing and diffraction in a planar CLC cell are combined between two glass plates, the imaging suffers from astigmatism in the resulting spectrum.

View Article and Find Full Text PDF

Several studies report on the sensitivity of human vision to static spatial sinusoidal achromatic and chromatic contrast variations. However, a Riemannian color difference metric, which includes the spatial and colorimetric properties of sinusoidal gratings, is lacking. Such a metric is important for various applications.

View Article and Find Full Text PDF

This study shows that, in cells with small thicknesses, the permanent polarization in the ferroelectric nematic phase of RM734 is aligned in the direction opposite to the rubbing direction. The electrode configuration induces an in-plane field near one substrate and a normal field near the other substrate. At low voltages, the permanent polarization rotates parallel to the substrate plane when its original orientation is at an angle with the electric field.

View Article and Find Full Text PDF

100 years ago, in 1923, the Nobel prize in physics was awarded for measurement of the unit charge. In addition to a profound impact on contemporary physics, this discovery has reshaped our understanding of charge-based interactions in chemistry and biology, ranging from oxidation and ionization to protein folding and metabolism. In a liquid, the discrete nature of the electric charge becomes prominent at the nanoscale when a charge carrier is exchanged between a molecule or a nanoparticle and the surrounding medium.

View Article and Find Full Text PDF

For the calculation of the color gamut volume and the maximum number of mutually discernible colors, an algorithm based on a Riemannian metric and the densest packing of spheres is proposed. With this algorithm, the color gamut volume was calculated for the conditions of experiments reported in literature. Good agreement was found with the experimental findings of the color gamut volume as a function of the peak luminance.

View Article and Find Full Text PDF

The recently discovered ferroelectric nematic liquids incorporate to the functional combination of fluidity, processability and anisotropic optical properties of nematic liquids, an astonishing range of physical properties derived from the phase polarity. Among them, the remarkably large values of second order optical susceptibility encourage to exploit these new materials for non-linear photonic applications. Here we show that photopatterning of the alignment layer can be used to structure polarization patterns.

View Article and Find Full Text PDF

Liquid crystalline polymers are attractive materials for untethered miniature soft robots. When they contain azo dyes, they acquire light-responsive actuation properties. However, the manipulation of such photoresponsive polymers at the micrometer scale remains largely unexplored.

View Article and Find Full Text PDF

The dispersion and tunable alignment of colloidal nanomaterials is desirable for practical applications in electric-optic (E-O) devices; however, it remains challenging for large one-dimensional nanomaterials with a large aspect ratio. Here, we demonstrate a large-scale, simple, multi-microdomain, and noncontact photoalignment technology to align colloidal silver nanowires (AgNWs, length ∼4.5 μm, diameter ∼70.

View Article and Find Full Text PDF

Flat optics based on chiral liquid crystal (CLC) can be achieved using holographic polarization recording with the help of a photoalignment technique to vary the orientation of the optical axis in a thin CLC layer. A variety of reflective diffractive optical components with high efficiency and polarization selectivity can be realized employing this technique. In this work we discuss the use of CLC diffractive lenses in a spectrometer.

View Article and Find Full Text PDF

Understanding the adsorption of polymers onto particles is crucial for many technological and biomedical applications. Even though polymer adsorption on particles is a dynamic process, most experimental techniques can only study the adsorption indirectly, in equilibrium and on the ensemble level. New analysis methods are required to overcome these limitations.

View Article and Find Full Text PDF

It is generally accepted that the perceptual color space is not Euclidean. A new line element for a 3-dimensional Riemannian color space was developed. This line element is based on the Friele line elements and psychophysical color discrimination models, and comprises both the first and second stage of color vision.

View Article and Find Full Text PDF

This paper demonstrates a thin and transparent reflector film for the near infrared, based on chiral nematic liquid crystal (CLC) polymers. Two films reflect almost 50% of unpolarized incident light from 730 to 820 nm and from 880 to 1030 nm, while remaining completely transparent in the visible region with transmittance >90. An efficient window uses the combination of two reflectors.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are excellent optical gain materials that combine high material gain, a strong absorption of pump light, stability under strong light exposure and a suitability for solution-based processing. The integration of QDs in laser cavities that fully exploit the potential of these emerging optical materials remains, however, a challenge. In this work, we report on a vertical cavity surface emitting laser, which consists of a thin film of QDs embedded between two layers of polymerized chiral liquid crystal.

View Article and Find Full Text PDF

A thin, waterproof, and stable spatially tunable band reject filter is fabricated based on a chiral nematic liquid crystal polymer. The fabrication method for this filter is new, to the best of our knowledge, and straightforward. The photonic bandgap (PBG) of the proposed filter can be tuned from 350 nm to 760 nm by a mechanical movement of 6.

View Article and Find Full Text PDF

Highly efficient optical diffraction can be realized with the help of micrometer-thin liquid crystal (LC) layers with a periodic modulation of the director orientation. Electrical tunability is easily accessible due to the strong stimuli-responsiveness in the LC phase. By using well-designed photoalignment patterns at the surfaces, we experimentally stabilize two dimensional periodic LC configurations with switchable hexagonal diffraction patterns.

View Article and Find Full Text PDF

Liquid crystal (LC) based geometric phase optical elements are widely used to effectively change the wavefront or propagation direction of light. Using photoalignment, the liquid crystal can be aligned according to the designed pattern, leading to components such as gratings, lenses or general wavefront shaping devices. The functionality and efficiency of the component is strongly influenced by how well the LC follows the imposed alignment pattern.

View Article and Find Full Text PDF

Two-dimensional (2D) semiconductors are primed to realize a variety of photonic devices that rely on the transient properties of photogenerated charges, yet little is known on the change of the refractive index. The associated optical phase changes can be beneficial or undesired depending on the application, but require proper quantification. Measuring optical phase modulation of dilute 2D materials is, however, not trivial with common methods.

View Article and Find Full Text PDF

Colloidal CdSe quantum rings (QRs) are a recently developed class of nanomaterials with a unique topology. In nanocrystals with more common shapes, such as dots and platelets, the photophysics is consistently dominated by strongly bound electron-hole pairs, so-called excitons, regardless of the charge carrier density. Here, we show that charge carriers in QRs condense into a hot uncorrelated plasma state at high density.

View Article and Find Full Text PDF

The electrophoretic mobility of micron-scale particles is of crucial importance in applications related to pharmacy, electronic ink displays, printing, and food technology as well as in fundamental studies in these fields. Particle mobility measurements are often limited in accuracy because they are based on ensemble averages and because a correction for electroosmosis needs to be made based on a model. Single-particle approaches are better suited for examining polydisperse samples, but existing implementations either require multiple measurements to take the effect of electroosmosis into account or are limited in accuracy by short measurement times.

View Article and Find Full Text PDF

Correction for 'Space charge limited release of charged inverse micelles in non-polar liquids' by Manoj Prasad et al., Phys. Chem.

View Article and Find Full Text PDF

Semiconductor nanoparticles (SNPs), such as quantum dots (QDs) and core/shell nanoparticles, have proven to be promising candidates for the development of next-generation technologies, including light-emitting diodes (LEDs), liquid crystal displays (LCDs) and solar concentrators. Typically, these applications use a sub-micrometer-thick film of SNPs to realize photoluminescence. However, our current knowledge on how this thin SNP layer affects the optical efficiency remains incomplete.

View Article and Find Full Text PDF

Correction for 'Electrokinetics and behavior near the interface of colloidal particles in non-polar dispersions' by Manoj Prasad et al., Soft Matter, 2017, 13, 5604-5612, DOI: .

View Article and Find Full Text PDF

The adsorption of charged inverse micelles at the electrode-liquid interface has an important effect on field screening and on the voltage drop over diffuse double layers. Recently, we analyzed the behavior of inverse micelles in a nonpolar liquid close to this electrode-liquid interface. For the fluorocarbon/surfactant system under study, we are in the limit of slow adsorption and negligible desorption of inverse micelles on the electrodes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm8ovke1ve2mfo7m36ehgtb8i87rigbvf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once