Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time.
View Article and Find Full Text PDFOptogenetic systems use genetically-encoded light-sensitive proteins to control and study cellular processes. As the number and quality of these systems grows, there is an increasing need for user-friendly and flexible hardware to provide programmed illumination to cultures of cells. One platform which satisfies this need for a variety of optogenetic systems and organisms is the Light Plate Apparatus (LPA), which delivers a controlled light dose to each well of a 24-well plate.
View Article and Find Full Text PDFUnlabelled: Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state.
View Article and Find Full Text PDF