Power-line-interference (PLI) is one of the major disturbing factors in almost all ground-free biopotential acquisition applications. The body is a volume conductor and collects PLI currents. Some of these currents pass through the sensing electrodes, then the electrode cables, and finally via the amplifier input impedances they reach the signal ground.
View Article and Find Full Text PDFObjective: This study participated in the 2017 PhysioNet/CinC Challenge dedicated to the classification of atrial fibrillation (AF), normal sinus rhythm (Normal), other arrhythmia (Other) and strong noise, using single-lead electrocardiogram (ECG) recordings with a duration <60 s. The aim is to apply a linear threshold-based strategy for arrhythmia classification, ranking the most powerful time domain ECG features that could be easily reproduced on any platform.
Approach: An algorithm for time domain ECG analysis was designed to extract 44 features with focus on the following: noise detection; heart rate variability (HRV) analysis; beat morphology analysis and delineation of P-, QRS-, and T-waves in the robust average beat; detection of atrial activity by the presence of P-waves in the average beat and atrial fibrillatory waves (f-waves) during TQ intervals.
The electrocardiogram (ECG) acquisition is often accompanied by high-frequency electromyographic (EMG) noise. The noise is difficult to be filtered, due to considerable overlapping of its frequency spectrum to the frequency spectrum of the ECG. Today, filters must conform to the new guidelines (2007) for low-pass filtering in ECG with cutoffs of 150 Hz for adolescents and adults, and to 250 Hz for children.
View Article and Find Full Text PDFThis paper presents a simple digital approach for adaptive power-line (PL) or other periodic interference extraction. By means of two digital square (or sine) wave mixers, the real and imaginary parts of the interference are found, and the interference waveform is synthesized and finally subtracted. The described technique can be implemented in an open-loop architecture where the interference is synthesized as a complex sinusoid or in a closed-loop architecture for automatic phase and gain control.
View Article and Find Full Text PDFPortable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation. Low-voltage and low-power tendencies prevail. A two-electrode biopotential amplifier, designed for low-supply voltage (2.
View Article and Find Full Text PDFA simple, cost effective circuit for a two-electrode non-differential biopotential amplifier is proposed. It uses a 'virtual ground' transimpedance amplifier and a parallel RC network for input common mode current equalisation, while the signal input impedance preserves its high value. With this innovative interface circuit, a simple non-inverting amplifier fully emulates high CMRR differential.
View Article and Find Full Text PDFOne of the most important performances of the defibrillator-embedded amplifier-monitor-recorder tract, connected to defibrillator electrodes, is its rapid recovery after the application of the shock pulse. Practically near-immediate restoration of the signal trace is mandatory for studies of post-shock effects on the myocardium. Automatic analysis of the electrocardiogram signal in public-access defibrillation, aiming for about 100% correct recognition of shockable and non-shockable rhythms, now requires fast amplifier settling, as the decision time should not exceed 10-20 s.
View Article and Find Full Text PDFThe most prominent feature of bronchial asthma is the fluctuating airway obstruction of the affected subjects. Cough is also one of the major symptoms of asthma, but of other conditions as well. The continuous registration of airway obstruction and coughing in the working or open-air environment or at the homes of the potential sufferers may help establish a sometimes elusive diagnosis.
View Article and Find Full Text PDF