Publications by authors named "Newsham I"

Cancer, a collection of more than two hundred different diseases, remains a leading cause of morbidity and mortality worldwide. Usually detected at the advanced stages of disease, metastatic cancer accounts for 90% of cancer-associated deaths. Therefore, the early detection of cancer, combined with current therapies, would have a significant impact on survival and treatment of various cancer types.

View Article and Find Full Text PDF

Current gold standard diagnostic strategies are unable to accurately differentiate malignant from benign small renal masses preoperatively; consequently, 20% of patients undergo unnecessary surgery. Devising a more confident presurgical diagnosis is key to improving treatment decision-making. We therefore developed MethylBoostER, a machine learning model leveraging DNA methylation data from 1228 tissue samples, to classify pathological subtypes of renal tumors (benign oncocytoma, clear cell, papillary, and chromophobe RCC) and normal kidney.

View Article and Find Full Text PDF

Prostate cancer antigen 3 (PCA3) is the most specific prostate cancer biomarker but its function remains unknown. Here we identify PRUNE2, a target protein-coding gene variant, which harbors the PCA3 locus, thereby classifying PCA3 as an antisense intronic long noncoding (lnc)RNA. We show that PCA3 controls PRUNE2 levels via a unique regulatory mechanism involving formation of a PRUNE2/PCA3 double-stranded RNA that undergoes adenosine deaminase acting on RNA (ADAR)-dependent adenosine-to-inosine RNA editing.

View Article and Find Full Text PDF

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species.

View Article and Find Full Text PDF

Background: Genome-wide association studies have identified thousands of genetic variants that influence a variety of diseases and health-related quantitative traits. However, the causal variants underlying the majority of genetic associations remain unknown. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study aims to follow up genome-wide association study signals and identify novel associations of the allelic spectrum of identified variants with cardiovascular-related traits.

View Article and Find Full Text PDF

Background: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.

View Article and Find Full Text PDF

We report on results from whole-exome sequencing (WES) of 1,039 subjects diagnosed with autism spectrum disorders (ASD) and 870 controls selected from the NIMH repository to be of similar ancestry to cases. The WES data came from two centers using different methods to produce sequence and to call variants from it. Therefore, an initial goal was to ensure the distribution of rare variation was similar for data from different centers.

View Article and Find Full Text PDF

To characterize the role of rare complete human knockouts in autism spectrum disorders (ASDs), we identify genes with homozygous or compound heterozygous loss-of-function (LoF) variants (defined as nonsense and essential splice sites) from exome sequencing of 933 cases and 869 controls. We identify a 2-fold increase in complete knockouts of autosomal genes with low rates of LoF variation (≤ 5% frequency) in cases and estimate a 3% contribution to ASD risk by these events, confirming this observation in an independent set of 563 probands and 4,605 controls. Outside the pseudoautosomal regions on the X chromosome, we similarly observe a significant 1.

View Article and Find Full Text PDF

Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.

View Article and Find Full Text PDF

A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information.

View Article and Find Full Text PDF

We sequenced eight melanoma exomes to identify new somatic mutations in metastatic melanoma. Focusing on the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family, we found that 24% of melanoma cell lines have mutations in the protein-coding regions of either MAP3K5 or MAP3K9. Structural modeling predicted that mutations in the kinase domain may affect the activity and regulation of these protein kinases.

View Article and Find Full Text PDF

Polymicrogyria is a disorder of neuronal development resulting in structurally abnormal cerebral hemispheres characterized by over-folding and abnormal lamination of the cerebral cortex. Polymicrogyria is frequently associated with severe neurologic deficits including intellectual disability, motor problems, and epilepsy. There are acquired and genetic causes of polymicrogyria, but most patients with a presumed genetic etiology lack a specific diagnosis.

View Article and Find Full Text PDF

Background: Enrichment of loci by DNA hybridization-capture, followed by high-throughput sequencing, is an important tool in modern genetics. Currently, the most common targets for enrichment are the protein coding exons represented by the consensus coding DNA sequence (CCDS). The CCDS, however, excludes many actual or computationally predicted coding exons present in other databases, such as RefSeq and Vega, and non-coding functional elements such as untranslated and regulatory regions.

View Article and Find Full Text PDF

Whole-genome sequencing of patient DNA can facilitate diagnosis of a disease, but its potential for guiding treatment has been under-realized. We interrogated the complete genome sequences of a 14-year-old fraternal twin pair diagnosed with dopa (3,4-dihydroxyphenylalanine)-responsive dystonia (DRD; Mendelian Inheritance in Man #128230). DRD is a genetically heterogeneous and clinically complex movement disorder that is usually treated with l-dopa, a precursor of the neurotransmitter dopamine.

View Article and Find Full Text PDF

Accurately determining the distribution of rare variants is an important goal of human genetics, but resequencing of a sample large enough for this purpose has been unfeasible until now. Here, we applied Sanger sequencing of genomic PCR amplicons to resequence the diabetes-associated genes KCNJ11 and HHEX in 13,715 people (10,422 European Americans and 3,293 African Americans) and validated amplicons potentially harbouring rare variants using 454 pyrosequencing. We observed far more variation (expected variant-site count ∼578) than would have been predicted on the basis of earlier surveys, which could only capture the distribution of common variants.

View Article and Find Full Text PDF

We have developed a solution-based method for targeted DNA capture-sequencing that is directed to the complete human exome. Using this approach allows the discovery of greater than 95% of all expected heterozygous singe base variants, requires as little as 3 Gbp of raw sequence data and constitutes an effective tool for identifying rare coding alleles in large scale genomic studies.

View Article and Find Full Text PDF

Although the primary response to Adriamycin (doxorubicin) in p53 mutant MDA-MB231 and p53 null MCF-7/E6 breast tumor cells is apoptotic cell death, the residual surviving population appears to be in a state of senescence, based on cell morphology, beta galactosidase staining, induction of p21(waf1/cip1) and down regulation of cdc2/cdk1. Suppression of apoptosis in MDA-MB231 and MCF-7/E6 cells treated with Adriamycin using the broad spectrum caspase inhibitor, zvad-Fmk, results in substantial induction of autophagy. Overall sensitivity to Adriamycin, measured by clonogenic survival, is not altered in the cells undergoing autophagy, consistent with autophagy contributing to cell death in response to Adriamycin.

View Article and Find Full Text PDF

JG-03-14, a substituted pyrrole that inhibits microtubule polymerization, was screened against MCF-7 (p53 wild type), MDA-MB231 (p53 mutant), MCF-7/caspase 3 and MCF-7/ADR (multidrug resistant) breast tumor cell lines. Cell viability and growth inhibition were assessed by the crystal violet dye assay. Apoptosis was evaluated by the TUNEL assay, cell cycle distribution by flow cytometry, autophagy by acridine orange staining of vesicle formation, and senescence based on beta-galactosidase staining and cell morphology.

View Article and Find Full Text PDF

TSLC1 and DAL-1 are tumor suppressor genes involved in cell adhesion. In this study, we examined the expression and methylation pattern of these genes in breast cancer cell lines and primary breast carcinomas. TSLC1 expression was lost in 5 of 8 (63%) and DAL-1 expression was lost in 6 of 8 (75%) breast cancer cell lines, respectively.

View Article and Find Full Text PDF

1,25-Dihydroxyvitamin D(3) and vitamin D(3) analogues, such as EB 1089, potentiate the response to ionizing radiation in breast tumor cells. The current studies address the basis for this interaction by evaluating DNA damage and repair, the effect of interference with reactive oxygen generation, the involvement of p53 and caspase-3, signaling through c-myc, as well as the induction of senescence and multiple modes of cell death. EB 1089 failed to increase the extent of radiation-induced DNA damage or to attenuate the rate of DNA repair.

View Article and Find Full Text PDF

Background: DAL-1 (Differentially Expressed in Adenocarcinoma of the Lung)/4.1B is a member of the protein 4.1 superfamily that has been shown to suppress growth in lung, breast and brain tumor cells.

View Article and Find Full Text PDF

4.1B is a member of the protein 4.1 superfamily of proteins that link transmembrane proteins to the actin cytoskeleton.

View Article and Find Full Text PDF

We previously identified DAL-1/4.1B as a growth suppression protein involved in the pathogenesis of lung, breast, and meningioma tumors. Using yeast two-hybrid interaction cloning, protein arginine N-methyltransferase 3 (PRMT3) was originally identified as a DAL-1/4.

View Article and Find Full Text PDF

Recently, we have reported that the protein 4.1B immunolocalization occurred only in matured columnar epithelial cells of normal rat intestines. This finding suggested that protein 4.

View Article and Find Full Text PDF