Objective: NGFR/p75NTR and NRADD/NRH proteins are closely related structurally and are encoded by genes that arose from a duplication event early in vertebrate evolution. The transmembrane domain (TMD) of NGFR is cleaved by γ-secretase but there is conflicting data around the susceptibility to γ-secretase cleavage of NRADD proteins. If NGFR and NRADD show differential susceptibility to γ-secretase, then they can be used to dissect the structural constraints determining substrate susceptibility.
View Article and Find Full Text PDFEnergy production is the most fundamentally important cellular activity supporting all other functions, particularly in highly active organs, such as brains. Here, we summarise transcriptome analyses of young adult (pre-disease) brains from a collection of 11 early-onset familial Alzheimer's disease (EOFAD)-like and non-EOFAD-like mutations in three zebrafish genes. The one cellular activity consistently predicted as affected by only the EOFAD-like mutations is oxidative phosphorylation, which produces most of the energy of the brain.
View Article and Find Full Text PDFBackground: Iron trafficking and accumulation is associated with Alzheimer's disease (AD) pathogenesis. However, the role of iron dyshomeostasis in early disease stages is uncertain. Currently, gene expression changes indicative of iron dyshomeostasis are not well characterized, making it difficult to explore these in existing datasets.
View Article and Find Full Text PDFBackground: Mutations in () cause early onset familial Alzheimer's disease (EOfAD) but their mode of action remains elusive. One consistent observation for all gene mutations causing EOfAD is that a transcript is produced with a reading frame terminated by the normal stop codon-the "reading frame preservation rule". Mutations that do not obey this rule do not cause the disease.
View Article and Find Full Text PDFZebrafish represent a valuable model for investigating the molecular and cellular basis of Fragile X syndrome (FXS). Reduced expression of the zebrafish orthologous gene, , causes developmental and behavioural phenotypes related to FXS. Zebrafish homozygous for the hu2787 non-sense mutation allele of are widely used to model FXS, although FXS-relevant phenotypes seen from morpholino antisense oligonucleotide (morpholino) suppression of transcript translation were not observed when hu2787 was first described.
View Article and Find Full Text PDFBackground: The most common cause of early-onset familial Alzheimer's disease (EOfAD) is mutations in PRESENILIN 1 (PSEN1) allowing production of mRNAs encoding full-length, but mutant, proteins. In contrast, a single known frameshift mutation in PSEN1 causes familial acne inversa (fAI) without EOfAD. The molecular consequences of heterozygosity for these mutation types, and how they cause completely different diseases, remains largely unexplored.
View Article and Find Full Text PDFBackground: Early-onset familial Alzheimer's disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer's disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1, in zebrafish and performed transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification.
View Article and Find Full Text PDFBackground: The PRESENILIN genes (PSEN1, PSEN2) encoding for their respective proteins have critical roles in many aspects of Alzheimer's disease (AD) pathogenesis. The PS2V transcript of PSEN2 encodes a truncated protein and is upregulated in AD brains; however, its relevance to AD and disease progression remains to be determined.
Objective: Assess transcript levels in postmortem AD and non-AD brain tissue and in lymphocytes collected under the Australian Imaging Biomarker and Lifestyle (AIBL) study.
Previously, we found that brains of adult zebrafish heterozygous for Alzheimer's disease-related mutations in their presenilin 1 gene (psen1, orthologous to human PSEN1) show greater basal expression levels of hypoxia responsive genes relative to their wild type siblings under normoxia, suggesting hypoxic stress. In this study, we investigated whether this might be due to changes in brain vasculature. We generated and compared 3D reconstructions of GFP-labelled blood vessels of the zebrafish forebrain from heterozygous psen1 mutant zebrafish and their wild type siblings.
View Article and Find Full Text PDFBackground: The early cellular stresses leading to Alzheimer's disease (AD) remain poorly understood because we cannot access living, asymptomatic human AD brains for detailed molecular analyses. Sortilin-related receptor 1 (SORL1) encodes a multi-domain receptor protein genetically associated with both rare, early-onset familial AD (EOfAD) and common, sporadic, late-onset AD (LOAD). SORL1 protein has been shown to act in the trafficking of the amyloid β A4 precursor protein (AβPP) that is proteolysed to form one of the pathological hallmarks of AD, amyloid-β (Aβ) peptide.
View Article and Find Full Text PDFTo prevent or delay the onset of Alzheimer's disease (AD), we must understand its molecular basis. The great majority of AD cases arise sporadically with a late onset after 65 years of age (LOAD). However, rare familial cases of AD can occur due to dominant mutations in a small number of genes that cause an early onset prior to 65 years of age (EOfAD).
View Article and Find Full Text PDFPRESENILIN 2 (PSEN2) is one of the genes mutated in early onset familial Alzheimer's disease (EOfAD). PSEN2 shares significant amino acid sequence identity with another EOfAD-related gene PRESENILIN 1 (PSEN1), and partial functional redundancy is seen between these two genes. However, the complete range of functions of PSEN1 and PSEN2 is not yet understood.
View Article and Find Full Text PDFAgeing is the major risk factor for Alzheimer's disease (AD), a condition involving brain hypoxia. The majority of early-onset familial AD (EOfAD) cases involve dominant mutations in the gene PSEN1. PSEN1 null mutations do not cause EOfAD.
View Article and Find Full Text PDFencodes a large, multi-domain containing, membrane-bound receptor involved in endosomal sorting of proteins between the trans-Golgi network, endosomes and the plasma membrane. It is genetically associated with Alzheimer's disease (AD), the most common form of dementia. is a unique gene in AD, as it appears to show strong associations with the common, late-onset, sporadic form of AD and the rare, early-onset familial form of AD.
View Article and Find Full Text PDFBackground: The molecular changes involved in Alzheimer's disease (AD) progression remain unclear since we cannot easily access antemortem human brains. Some non-mammalian vertebrates such as the zebrafish preserve AD-relevant transcript isoforms of the PRESENILIN genes lost from mice and rats. One example is PS2V, the alternative transcript isoform of the PSEN2 gene.
View Article and Find Full Text PDFTo prevent or ameliorate Alzheimer's disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial AD (EOfAD).
View Article and Find Full Text PDFObjective: Autosomal-dominant familial Alzheimer disease (AD) is caused by by variants in presenilin 1 (), presenilin 2 (), and amyloid precursor protein (). Previously, we reported a rare frameshift variant in an early-onset AD case (PSEN2 p.K115Efs*11).
View Article and Find Full Text PDFAccumulating evidence relates finger gnosis (also called finger sense or finger gnosia), the ability to identify and individuate fingers, to cognitive processing, particularly numerical cognition. Multiple studies have shown that finger gnosis scores correlate with or predict numerical skills in children. Neuropsychological cases as well as magnetic stimulation studies have also shown that finger agnosia (defects in finger gnosis) often co-occurs with cognitive impairments, including agraphia and acalculia.
View Article and Find Full Text PDFCerebral palsy (CP) is the most frequent movement disorder of childhood affecting 1 in 500 live births in developed countries. We previously identified likely pathogenic de novo or inherited single nucleotide variants (SNV) in 14% (14/98) of trios by exome sequencing and a further 5% (9/182) from evidence of outlier gene expression using RNA sequencing. Here, we detected copy number variants (CNV) from exomes of 186 unrelated individuals with CP (including our original 98 trios) using the CoNIFER algorithm.
View Article and Find Full Text PDFPRESENILIN 1 (PSEN1) and PRESENILIN 2 (PSEN2) genes are loci for mutations causing familial Alzheimer's disease (fAD). However, the function of these genes and how they contribute to fAD pathogenesis has not been fully determined. This review provides a summary of the overlapping and independent functions of the PRESENILINS with a focus on the lesser studied PSEN2.
View Article and Find Full Text PDFAlzheimer's disease is the most common form of age-related dementia. At least 15 mutations in the human gene PRESENILIN 2 (PSEN2) have been found to cause familial Alzheimer's disease (fAD). Zebrafish possess an orthologous gene, psen2, and present opportunities for investigation of PRESENILIN function related to Alzheimer's disease.
View Article and Find Full Text PDFThe overwhelming majority of dominant mutations causing early onset familial Alzheimer's disease (EOfAD) occur in only three genes, , and . An effect-in-common of these mutations is alteration of production of the APP-derived peptide, amyloid β (Aβ). It is this key fact that underlies the authority of the Amyloid Hypothesis that has informed Alzheimer's disease research for over two decades.
View Article and Find Full Text PDFObjective: Repeat expansion of polyglutamine tracks leads to a group of inherited human neurodegenerative disorders. Studying such repetitive sequences is required to gain insight into the pathophysiology of these diseases. PCR-based manipulation of repetitive sequences, however, is challenging due to the absence of unique primer binding sites or the generation of non-specific products.
View Article and Find Full Text PDF