Peripheral nerve injuries (PNIs) are a debilitating problem, resulting in diminished quality of life due to the continued presence of both chronic and acute pain. The current standard of practice for the repair of PNIs larger than 10 mm is the use of autologous nerve grafts. Autologous nerve grafts have limitations that often result in outcomes that are not sufficient to remove motor and sensory impairments.
View Article and Find Full Text PDFIn allogeneic MSC implantation, the cells are isolated from a donor different from the recipient. When tested, allogeneic MSCs have several advantages over autologous ones: faster cell growth, sufficient cell concentration, and readily available cells for clinics. To ensure the safe and efficient use of allogeneic MSCs in clinics, the MSCs need to be first tested in vitro.
View Article and Find Full Text PDFThis comprehensive review offers a thorough examination of fetal heart rate (fHR) monitoring methods, which are an essential component of prenatal care for assessing fetal health and identifying possible problems early on. It examines the clinical uses, accuracy, and limitations of both modern and traditional monitoring techniques, such as electrocardiography (ECG), ballistocardiography (BCG), phonocardiography (PCG), and cardiotocography (CTG), in a variety of obstetric scenarios. A particular focus is on the most recent developments in textile-based wearables for fHR monitoring.
View Article and Find Full Text PDFTextile-based thermoelectric (TE) devices are being investigated to power smart textiles autonomously. While previous research has focused on a solid system where the required junctions are fabricated into the device, there has been limited attention given to replacing these TE systems reliably. This work looks at a newer approach to the construction and demonstration of a wearable thermoelectric structure that employs three-dimensional knitted spacers to increase the temperature difference where the TE junctions are detachable and disposable.
View Article and Find Full Text PDFCarbon quantum dots (CQDs) have been investigated for biomedical applications in medical imaging due to their fluorescent properties, overall long-term stability, and excellent cytocompatibility and biocompatibility. Lignin is an organic polymer in the tissues of woody plants. It is also considered a byproduct of the wood and pulp industries.
View Article and Find Full Text PDFSmart textiles are transforming the future of wearable technology, and due to that, there has been a great deal of new research looking for alternative energy storage. Supercapacitors offer high discharge rates, flexibility, and long life cycles and can be integrated fully into a textile. Optimization of these new systems includes utilizing electrically conductive materials, employing successful electrostatic charge and/or faradaic responses, and fabricating a textile-based energy storage system without disrupting comfort, washability, and life cycle.
View Article and Find Full Text PDFTissue-engineering technologies have the potential to provide an effective approach to bone regeneration. Based on the published literature and data from our laboratory, two biomaterial inks containing PLGA and blended with graphene nanoparticles were fabricated. The biomaterial inks consisted of two forms of commercially available PLGA with varying ratios of LA:GA (65:35 and 75:25) and molecular weights of 30,000-107,000.
View Article and Find Full Text PDFThe timing and connections between global cooling, marine redox conditions, and biotic turnover are underconstrained for the Late Ordovician. The second most severe mass extinction occurred at the end of the Ordovician period, resulting in ~85% loss of marine species between two extinction pulses. As the only "Big 5" extinction that occurred during icehouse conditions, this interval is an important modern analog to constrain environmental feedbacks.
View Article and Find Full Text PDFGraphene-based materials have recently gained attention for regenerating various tissue defects including bone, nerve, cartilage, and muscle. Even though the potential of graphene-based biomaterials has been realized in tissue engineering, there are significantly many more studies reporting in vitro and in vivo data in bone tissue engineering. Graphene constructs have mainly been studied as two-dimensional (2D) substrates when biological organs are within a three-dimensional (3D) environment.
View Article and Find Full Text PDFStem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo.
View Article and Find Full Text PDFSurgical site infections (SSIs) are a common complication following orthopedic surgery. SSIs may occur secondary to traumatic or contaminated wounds or may result from invasive procedures. The development of biofilms is often associated with implanted materials used to stabilize injuries and to facilitate healing.
View Article and Find Full Text PDFSurprising it may seem, the mental health issues remains largely overlooked in the highly competitive and unforgiving industry of modelling and fashion. A substantial number of models experience mental health issues due to the nature of their occupation, however, most avoid speaking out due to fear of stigma and losing out on future work. Moreover, problematic eating behaviours in attempts to improve body image can have profoundly adverse effects on mental and physical health, even leading to death in extreme cases, yet these behaviours are being reinforced and rewarded with success and career progression.
View Article and Find Full Text PDFBackground: In the last decade, graphene surfaces have consistently supported osteoblast development of stem cells, holding promise as a therapeutic implant for degenerative bone diseases. However, until now no study has specifically examined the genetic changes when stem cells undergo osteogenic differentiation on graphene.
Results: In this study, we provide a detailed overview of gene expressions when human mesenchymal stem cells (MSCs) derived from either adipose tissue (AD-MSCs) or bone marrow (BM-MSCs), are cultured on graphene.
Long-chain branched polypropylene (LCB PP) has been used extensively to improve cell morphologies in foaming applications. However, most research focuses on low melt flow rate (MFR) resins, whereas foam production methods such as mold-opening foam injection molding (MO-FIM) require high-MFR resins to improve processability. A systematic study was conducted comparing a conventional linear PP, a broad molecular weight distribution (BMWD) linear PP, and a newly developed BMWD LCB PP for use in MO-FIM.
View Article and Find Full Text PDFBackground: Due to restorative concerns, bone regenerative therapies have garnered much attention in the field of human oral/maxillofacial surgery. Current treatments using autologous and allogenic bone grafts suffer from inherent challenges, hence the ideal bone replacement therapy is yet to be found. Establishing a model by which MSCs can be placed in a clinically acceptable bone defect to promote bone healing will prove valuable to oral/maxillofacial surgeons.
View Article and Find Full Text PDFPurpose: The extracellular matrix (ECM) labyrinthine network secreted by mesenchymal stem cells (MSCs) provides a microenvironment that enhances cell adherence, proliferation, viability, and differentiation. The potential of graphene-based nanomaterials to mimic a tissue-specific ECM has been recognized in designing bone tissue engineering scaffolds. In this study, we investigated the expression of specific ECM proteins when human fat-derived adult MSCs adhered and underwent osteogenic differentiation in the presence of functionalized graphene nanoparticles.
View Article and Find Full Text PDFPressure mapping systems are often used for indirect assessment of kinematic gait parameter differences after repair of critical peripheral nerve defects in small animal models. However, there does not appear to be any literature that studies the differences in normal gait pattern of Sprague Dawley rats compared to Lewis rats using a Tekscan VH4 pressure mat system. The purpose of this study is to assess the gait profile of Lewis and Sprague Dawley rats generated by Tekscan's VH4 system to detect similarities and/or differences in gait parameters involving both force and temporal variables.
View Article and Find Full Text PDFThe complex dynamic nature of bone tissue presents a unique challenge for developing optimal biomaterials within the field of bone tissue engineering. Materials based on biological and physiological characteristics of natural bone have shown promise for inducing and promoting effective bone repair. Design of multicomposite scaffolds that incorporate both malleable and hard mineral components allows for intricate structures with nano- and macrosized mineral components to provide architectural elements that promote osteogenesis.
View Article and Find Full Text PDFHorses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor.
View Article and Find Full Text PDFA 2D multifunctional nanocomposite system of gold nanorods (AuNRs) was developed. Gold nanorods were functionalized via polyethylene glycol with a terminal amine, and, were characterized using transmission and scanning electron microscopy, ultra violet-visible and X-ray photoelectron spectroscopy, and Zeta-potential. The system was cytocompatible to and maintained the integrity of Schwann cells.
View Article and Find Full Text PDFThe 4-1BB glycoprotein is a member of the tumor necrosis factor receptor superfamily and binds to a high-affinity ligand (4-1BBL) expressed on several antigen-presenting cells such as macrophages and activated B cells. Expression of 4-1BB is restricted to primed CD4+ and CD8+ T cells, and 4-1BB signaling either by binding to 4-1BBL or by antibody ligation delivers a dual mitogenic signal for T-cell activation and growth. These observations suggest an important role for 4-1BB in the amplification of T cell-mediated immune responses.
View Article and Find Full Text PDFGenetic modification of many types of mouse tumors to express the B7-1 or B7-2 molecules, natural ligands for the T cell-costimulatory molecule CD28, increases their immunogenicity. However, even after transfection with the B7-1 and/or B7-2 genes, poorly immunogenic tumors fail to elicit and efficient immune response. We report here that two such tumors, the Ag104A sarcoma and the K1735-M2 melanoma, become immunogenic after transfection of the genes encoding murine B7-1 together with CD48, which is the natural ligand for CD2.
View Article and Find Full Text PDFWe previously reported that the murine EL-4 lymphoma (H-2b) transduced with a retrovirus containing the murine B7-1 gene (B7+ EL-4) grew transiently for several weeks and subsequently regressed in allogenic BALB/c (nu/nu) athymic mice (H-2d). We now show that, in contrast, B7+ EL-4 cells grow progressively in several combined immunodeficiency mice, including SCID and NIH III mice, which lack T cells expressing either TCR-alpha beta or -gamma delta. Furthermore, depletion of gamma delta T cells with a specific mAb made possible the progressive growth of B7+ EL-4 cells in 90% of athymic mice while depletion of alpha beta T cells allowed tumor growth in 50% of these mice.
View Article and Find Full Text PDF1. IgG, IgM and IgE anti-benzylpenicilloyl (BPO) antibody activities were determined by enzyme-linked immunosorbent assay (ELISA) in sera from 100 patients who claimed to be allergic to penicillin, and from 50 healthy volunteers. Continuous frequency distributions for all three classes of anti-BPO antibody, defined as differential binding (delta OD) to BPO-human serum albumin (HSA) and HSA, were obtained for both groups.
View Article and Find Full Text PDF