Publications by authors named "Nevio Tagliamonte"

Article Synopsis
  • Treadmill-based Robotic-Assisted Gait Training (t-RAGT) enhances rehabilitation by using robots to help patients walk, but the role of physiotherapists and the type of feedback provided to patients needs further exploration.
  • This study examined the effects of different types of visual feedback (chart, emoticon, game) and levels of physiotherapist-patient interaction (low, medium, high) on patients' attention and emotional engagement using eye-tracking and EEG methods.
  • Results indicated that both the type of feedback and the level of interaction influenced patients' visual attention and emotional response, particularly regarding the therapist's involvement and the areas of interest monitored during the t-RAGT sessions.
View Article and Find Full Text PDF

Several technologies have been introduced into neurorehabilitation programs to enhance traditional treatment of individuals with Spinal Cord Injury (SCI). Their effectiveness has been widely investigated, but their adoption has not been properly quantified. The aim of this study is to assess the distribution of conventional (Treatment As Usual-TAU) and technology-aided (Treatment With Technologies-TWT) treatments conveniently grouped based on different therapeutic goals in a selected SCI unit.

View Article and Find Full Text PDF

The broad spread of cooperative robots into many application domains has resulted in a demand for intuitive and effective solutions for teleoperated control. A relevant role in teleoperation has been assumed by impedance controllers, that allow the increase of stability and accuracy during interaction. This paper aims to test a teleoperation method based on an impedance controller, namely tele-impedance control, that is usable in unstructured environments since it relies only on wearable sensors.

View Article and Find Full Text PDF

The widespread adoption of robotic technologies in healthcare has opened up new perspectives for enhancing accuracy, effectiveness and quality of medical procedures and patients' care. Special attention has been given to the reliability of robots when operating in environments shared with humans and to the users' safety, especially in case of mobile platforms able to navigate autonomously. From the analysis of the literature, it emerges that navigation tests carried out in a hospital environment are preliminary and not standardized.

View Article and Find Full Text PDF

In the dynamic landscape of contemporary healthcare, the imperative for advancing the frontiers of knowledge and improving patient outcomes necessitates a paradigm shift towards a multidisciplinary approach. This background great enhances a nurse's ability to interface with technology and create technical solutions such as robots, patient care devices, or computer simulation for patient care needs and nursing care delivery. This study aims to describe, through a narrative review of evidence, a methodology to develop and manager Nursing-Engineering interdisciplinary project, clarify the key points and facilitate professionals who are not very familiar with this topic.

View Article and Find Full Text PDF

Background: Balance is a crucial function of basic Activities of Daily Living (ADL) and is often considered the priority in Spinal Cord Injury (SCI) patients' rehabilitation. Technological devices have been developed to support balance assessment and training, ensuring an earlier, intensive, and goal-oriented motor therapy.

Objective: The aim of this systematic review is to explore the technology-assisted strategies to assess and rehabilitate balance function in persons with SCI.

View Article and Find Full Text PDF

In the last decades, there have been great efforts in the development of advanced polyarticulated prosthetic hands; in contrast, prosthetic wrists have drawn less interest. Nevertheless, increasing the dexterity of the wrist improves handling skills because the wrist allows the prepositioning of the hand before carrying out a task, avoiding the onset of unwanted trunk or shoulders compensatory movements and potential onset or exacerbation of articular injuries. This study presents a novel 2-degree-of-freedom prosthetic wrist module with active pronation/supination and passive elastic flexion/extension.

View Article and Find Full Text PDF

Recent advances in the control of overground exoskeletons are being centered on improving balance support and decreasing the reliance on crutches. However, appropriate methods to quantify the stability of these exoskeletons (and their users) are still under development. A reliable and reproducible balance assessment is critical to enrich exoskeletons' performance and their interaction with humans.

View Article and Find Full Text PDF

Crutches are the most common walking aids prescribed to improve mobility in subjects with central nervous system (CNS) lesions. To increase adherence to the appropriate level of crutch usage, providing load-related auditory feedback (aFB) may be a useful approach. We sensorized forearm crutches and developed a custom software to provide aFB information to both user and physical therapist (PhT).

View Article and Find Full Text PDF

This work focuses on the design and the validation of a wearable mechatronic device for an at-home assessment of wrist stiffness in patients affected by Parkinson's Disease (PD). The device includes one actuated joint and four passive revolute joints with a high overall intrinsic backdriveability. In order to allow the user to freely move the wrist during activities of daily living, we implemented a transparent controller on the basis of the interaction force sensed by the embedded load cell.

View Article and Find Full Text PDF

Purpose: To examine physiological responses and perceived exertion during robot-assisted treadmill walking in non-ambulatory stroke survivors; compare these outcomes with aerobic exercise recommendations; and investigate the effect of robotic assistance.

Materials And Methods: Twelve non-ambulatory stroke survivors (67 ± 11 years-old, 84 ± 38 d post-stroke) participated. Subjects walked three times 20 min (1 session/day) in the Lokomat: once with conventional exercise parameters, once with 60% robotic assistance and once with 100% robotic assistance.

View Article and Find Full Text PDF

This paper proposes a novel control algorithm for torque-controlled exoskeletons assisting cyclic movements. The control strategy is based on the injection of energy parcels into the human-robot system with a timing that minimizes perturbations, i.e.

View Article and Find Full Text PDF

This work presents a wearable device and the algorithms for quantitative modelling of joint spasticity and its application in a pilot group of subjects with different levels of spinal cord injury. The device comprises light-weight instrumented handles to measure the interaction force between the subject and the physical therapist performing the tests, EMG sensors and inertial measurement units to measure muscle activity and joint kinematics. Experimental tests included the passive movement of different body segments, where the spasticity was expected, at different velocities.

View Article and Find Full Text PDF

Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limb muscles to assist the gait of SCI subjects.

View Article and Find Full Text PDF

This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted.

View Article and Find Full Text PDF

In the design of wearable robots that strictly interact with the human body and, in general, in any robotics application that involves the human component, the possibility of having modular joints able to produce a viscoelastic behaviour is very useful to achieve an efficient and safe human-robot interaction and to give rise to emergent dynamical behaviors. In this paper we propose the design of a compact, passive, rotary viscoelastic joint for assistive wearable robotics applications. The system integrates two functionally distinct sub-modules: one to render a desired torsional stiffness profile and the other to provide a desired torsional damping.

View Article and Find Full Text PDF

Non-anthropomorphic wearable robots (WRs) give good grounds for expecting advantageous performances over traditional anthropomorphic solutions from both the standpoints of ergonomics and of the dynamical interaction with the human body.

View Article and Find Full Text PDF