Previous UK Biobank studies showed that symptoms and physical measurements had excellent prediction on long-term clinical outcomes in general population. Symptoms and signs could intuitively and non-invasively predict and monitor disease progression, especially for telemedicine, but related research is limited in diabetes and renal medicine. This retrospective cohort study aimed to evaluate the predictive power of a symptom-based stratification framework and individual symptoms for diabetes.
View Article and Find Full Text PDFObjective: To treat patients with vascular mild cognitive impairment (VMCI) using traditional Chinese medicine (TCM), it is necessary to classify the patients into TCM syndrome types and to apply different treatments to different types. In this paper, we investigate how to properly carry out the classification for patients with VMCI aged 50 or above using a novel data-driven method known as latent tree analysis (LTA).
Method: A cross-sectional survey on VMCI was carried out in several regions in Northern China between February 2008 and February 2012 which resulted in a data set that involves 803 patients and 93 symptoms.
The efficacy of traditional Chinese medicine (TCM) treatments for Western medicine (WM) diseases relies heavily on the proper classification of patients into TCM syndrome types. The authors developed a data-driven method for solving the classification problem, where syndrome types were identified and quantified based on statistical patterns detected in unlabeled symptom survey data. The new method is a generalization of latent class analysis (LCA), which has been widely applied in WM research to solve a similar problem, i.
View Article and Find Full Text PDFBackground: Chinese medicine (CM) syndrome (zheng) differentiation is based on the co-occurrence of CM manifestation profiles, such as signs and symptoms, and pulse and tongue features. Insomnia is a symptom that frequently occurs in major depressive disorder despite adequate antidepressant treatment. This study aims to identify co-occurrence patterns in participants with persistent insomnia and major depressive disorder from clinical feature data using latent tree analysis, and to compare the latent variables with relevant CM syndromes.
View Article and Find Full Text PDF