Premise: Intraspecific variation in flower microbiome composition can mediate pollination and reproduction, and so understanding the community assembly processes driving this variation is critical. Yet the relative importance of trait-based host filtering and dispersal in shaping among-species variation in floral microbiomes remains unknown.
Methods: Within two clades of Brassicaceae, we compared diversity and composition of floral microbiomes in natural populations of focal nickel and selenium hyperaccumulator species and two of their non-accumulating relatives.
Premise: Whole-genome duplication (neopolyploidy) can instantly differentiate the phenotype of neopolyploids from their diploid progenitors. These phenotypic shifts in organs such as roots and leaves could also differentiate the way neopolyploids interact with microbial species. While some studies have addressed how specific microbial interactions are affected by neopolyploidy, we lack an understanding of how genome duplication affects the diversity and composition of microbial communities.
View Article and Find Full Text PDFFlowering plants require conspecific pollen to reproduce but they often also receive heterospecific pollen, suggesting that pollinators carry mixed pollen loads. However, little is known about drivers of abundance, diversity or composition of pollen carried by pollinators. Are insect-carried pollen loads shaped by pollinator traits, or do they reflect available floral resources? We quantified pollen on 251 individual bees and 95 flies in a florally diverse community.
View Article and Find Full Text PDFThe microbiome of flowers (anthosphere) is an understudied compartment of the plant microbiome. Within the flower, petals represent a heterogeneous environment for microbes in terms of resources and environmental stress. Yet, little is known of drivers of structure and function of the epiphytic microbial community at the within-petal scale.
View Article and Find Full Text PDFMicrobes (fungi, bacteria and viruses) living within flowers are hypothesized to affect pollination. We evaluate current support for this idea at each stage of the pollination process. Evidence to date is convincing that microbes influence pollinator attraction, but data are heavily weighted toward bumblebees and the effects of nectar yeasts.
View Article and Find Full Text PDFThe Selaginella rhizophore is a unique and enigmatic organ whose homology with roots, shoots, or neither of the two remains unresolved. Nevertheless, rhizophore-like organs have been documented in several fossil lycophytes. Here we test the homology of these organs through comparisons with the architecture of rhizophore vascularization in Selaginella.
View Article and Find Full Text PDF