Satellite DNAs (satDNAs) are tandemly repeated sequences that make up a significant portion of almost all eukaryotic genomes. Although satDNAs have been shown to play an important role in genome organization and evolution, they are relatively poorly analyzed, even in model organisms. One of the main reasons for the current lack of in-depth studies on satDNAs is their underrepresentation in genome assemblies.
View Article and Find Full Text PDFEukaryotic genomes are replete with satellite DNAs (satDNAs), large stretches of tandemly repeated sequences that are mostly underrepresented in genome assemblies. Here we combined nanopore long-read sequencing with a reference-guided assembly approach to generate an improved, high-quality genome assembly, TcasONT, of the model beetle Enriched by 45 Mb in repetitive regions, the new assembly comprises almost the entire genome sequence. We use the enhanced assembly to conduct global and in-depth analyses of abundant euchromatic satDNAs.
View Article and Find Full Text PDFUsing long-read sequencing, we assembled and unzipped the polyploid genomes of Meloidogyne incognita, M. javanica and M. arenaria, three of the most devastating plant-parasitic nematodes.
View Article and Find Full Text PDFThe red flour beetle is an important pest of stored agricultural products and the first beetle whose genome was sequenced. So far, one high-copy-number and ten moderate-copy-number satellite DNAs (satDNAs) have been described in the assembled part of its genome. In this work, we aimed to catalog the entire collection of satDNAs.
View Article and Find Full Text PDFBackground: Satellite DNAs (satDNAs) are tandemly repeated non-coding DNA sequences that belong to the most abundant and the fastest evolving parts of the eukaryotic genome. A satellitome represents the collection of different satDNAs in a genome. Due to extreme diversity and methodological difficulties to characterize and compare satDNA collection in complex genomes, knowledge on their putative functional constraints and capacity to participate in genome evolution remains rather elusive.
View Article and Find Full Text PDFThe flour beetle is a sibling species of the model organism and important pest . The two species are so closely related that they can produce hybrid progeny, but the genetic basis of their differences has not been revealed. In this work, we sequenced the genome by applying PacBio HiFi technology.
View Article and Find Full Text PDFThe long-read Nanopore sequencing has been recently applied for assembly of complex genomes and analysis of linear genome organization. The most critical factor for successful long-read sequencing is extraction of high molecular weight (HMW) DNA of sufficient purity and quantity. The challenges associated with input DNA quality are further amplified when working with extremely small insects with hard exoskeletons.
View Article and Find Full Text PDFAlthough centromeres have conserved function, centromere-specific histone H3 (CenH3) and centromeric DNA evolve rapidly. The centromere drive model explains this phenomenon as a consequence of the conflict between fast-evolving DNA and CenH3, suggesting asymmetry in female meiosis as a crucial factor. We characterized evolution of the CenH3 protein in three closely related, polyploid mitotic parthenogenetic species of the Meloidogyne incognita group, and in the distantly related meiotic parthenogen Meloidogyne hapla.
View Article and Find Full Text PDFCentromeres are chromosomal domains essential for kinetochore assembly and correct chromosome segregation. Inconsistent in their underlying DNA sequences, centromeres are defined epigenetically by the presence of the centromere-specific histone H3 variant CenH3. Most of the analyzed eukaryotes have monocentric chromosomes in which CenH3 proteins deposit into a single, primary constriction visible at metaphase chromosomes.
View Article and Find Full Text PDFSatellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats.
View Article and Find Full Text PDFBacteroides thetaiotaomicron is a dominant member of the human intestinal microbiome. The genome of this anaerobe encodes more than 100 proteolytic enzymes, the majority of which have not been characterized. In the present study, we have produced and purified recombinant dipeptidyl peptidase III (DPP III) from B.
View Article and Find Full Text PDFAlthough satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1-Cast9 extracted from the assembly comprise ∼4.
View Article and Find Full Text PDFTransposable elements (TEs) and satellite DNAs (satDNAs) are typically identified as major repetitive DNA components in eukaryotic genomes. TEs are DNA segments able to move throughout a genome while satDNAs are tandemly repeated sequences organized in long arrays. Both classes of repetitive sequences are extremely diverse, and many TEs and satDNAs exist within a genome.
View Article and Find Full Text PDFThree novel repetitive DNA sequences are described, presenting a similar heterochromatic chromosomal location in two hamster species: Phodopus roborovskii and Phodopus sungorus (Cricetidae, Rodentia). Namely, two species-specific repetitive sequences (PROsat from P. roborovskii and PSUchr1sat from P.
View Article and Find Full Text PDFWith the goal to contribute for the understanding of satellite DNA evolution and its genomic involvement, in this work it was isolated and characterized the first satellite DNA (PSUcentSat) from Phodopus sungorus (Cricetidae). Physical mapping of this sequence in P. sungorus showed large PSUcentSat arrays located at the heterochromatic (peri)centromeric region of five autosomal pairs and Y-chromosome.
View Article and Find Full Text PDFThe centromere is a chromosomal locus responsible for the faithful segregation of genetic material during cell division. It has become evident that centromeres can be established literally on any DNA sequence, and the possible synergy between DNA sequences and the most prominent centromere identifiers, protein components, and epigenetic marks remains uncertain. However, some evolutionary preferences seem to exist, and long-term established centromeres are frequently formed on long arrays of satellite DNAs and/or transposable elements.
View Article and Find Full Text PDFTandemly arrayed non-coding sequences or satellite DNAs (satDNAs) are rapidly evolving segments of eukaryotic genomes, including the centromere, and may raise a genetic barrier that leads to speciation. However, determinants and mechanisms of satDNA sequence dynamics are only partially understood. Sequence analyses of a library of five satDNAs common to the root-knot nematodes Meloidogyne chitwoodi and M.
View Article and Find Full Text PDFDipeptidyl peptidase III (DPP III), a member of the metallopeptidase family M49, was considered as an exclusively eukaryotic enzyme involved in intracellular peptide catabolism and pain modulation. In 2003, new data on genome sequences revealed the first prokaryotic orthologs, which showed low sequence similarity to eukaryotic ones and a cysteine (Cys) residue in the zinc-binding motif HEXXGH. Here we report the cloning and heterologous expression of DPP III from the human gut symbiont Bacteroides thetaiotaomicron.
View Article and Find Full Text PDFThe TTAGG repeat, the only determined telomerase-dependent sequence in the Insecta, is generally reputed to be the canonical telomeric motif within the class. By studying the distribution of telomeric DNAs in 30 coleopteran beetles using Southern hybridization, BAL 31 DNA end-degradation assay and fluorescence in situ hybridization, we showed that arrays built of a TCAGG repeat substitute for (TTAGG)n sequences in all tested species within the superfamily Tenebrionoidea. We also provided the experimental evidence that (TCAGG)n repeats represent the terminal sequences on all chromosomes of the model species Tribolium castaneum.
View Article and Find Full Text PDFSatellite DNAs (tandemly repeated, non-coding DNA sequences) stretch over almost all native centromeres and surrounding pericentromeric heterochromatin. Once considered as inert by-products of genome dynamics in heterochromatic regions, recent studies showed that satellite DNA evolution is interplay of stochastic events and selective pressure. This points to a functional significance of satellite sequences, which in (peri)centromeres may play some fundamental functional roles.
View Article and Find Full Text PDFAccording to the library model, related species can have in common satellite DNA (satDNA) families amplified in differing abundances, but reasons for persistence of particular sequences in the library during long periods of time are poorly understood. In this paper, we characterize 3 related satDNAs coexisting in the form of a library in mitotic parthenogenetic root-knot nematodes of the genus Meloidogyne. Due to sequence similarity and conserved monomer length of 172 bp, this group of satDNAs is named MEL172.
View Article and Find Full Text PDFSequence variability and distribution of a newly characterized MPA2 satellite DNA family are described in five root-knot nematode species of the genus Meloidogyne, the mitotic parthenogens M. paranaensis, M. incognita, M.
View Article and Find Full Text PDFTwo satellite DNAs have been characterized in the mitotic parthenogenetic root-knot nematodes Meloidogyne javanica and M. paranaensis, agriculturally important phytoparasitic species. The satellite repeat variants cloned from M.
View Article and Find Full Text PDF