Increase in body fat contributes to loss of function and changes in skeletal muscle, accelerating sarcopenia, a phenomenon known as sarco-obesity or sarcopenic obesity. Studies suggest that obesity decreases the skeletal muscle (SM)'s ability to oxidize glucose, increases fatty acid oxidation and reactive oxygen species production, due to mitochondrial dysfunction. Exercise improves mitochondrial dysfunction in obesity; however, it is not known if exercise regulates the mitochondrial unfolded protein response (UPRmt) in the SM.
View Article and Find Full Text PDFObjectives: An altered retinol metabolism might play a role in the development of nonalcoholic fatty liver disease (NAFLD). Tocopherols (TF) modulate metabolic pathways and have been proposed as a complementary treatment of obesity-induced metabolic alterations. Moreover, there is evidence suggesting that TF may modulate retinol metabolism.
View Article and Find Full Text PDFObjectives: The aim of this study was to evaluate the effect of the dietary supplementation of an alpha- and gamma-tocopherol mixture (1:5 ratio) in the adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers induced by consumption of a high-fat diet (HFD) in mice.
Methods: Male C57BL/6 J mice were fed for 12 wk and divided into the following: 1) control diet (CD; 10% fat, 20% protein, 70% carbohydrates); 2) CD + TF (CD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.
Duchenne muscular dystrophy (DMD) is a neuromuscular disease originated by mutations in the dystrophin gene. A promising therapeutic approach deals with functional substitution of dystrophin by utrophin, a structural homolog that might be able to compensate dystrophin absence in DMD muscle fibers. It has been described that both interleukin-6 (IL-6) and neuregulin-1 (NRG-1; Heregulin-HRG) induce utrophin expression in skeletal muscle.
View Article and Find Full Text PDFInsulin resistance is defined as a reduced ability of insulin to stimulate glucose utilization. C57BL/6 mice fed with a high-fat diet (HFD) are a model of insulin resistance. In skeletal muscle, hydrogen peroxide (H2O2) produced by NADPH oxidase 2 (NOX2) is involved in signaling pathways triggered by insulin.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a neuromuscular disease originated by reduced or no expression of dystrophin, a cytoskeletal protein that provides structural integrity to muscle fibres. A promising pharmacological treatment for DMD aims to increase the level of a structural dystrophin homolog called utrophin. Neuregulin-1 (NRG-1), a growth factor that potentiates myogenesis, induces utrophin expression in skeletal muscle cells.
View Article and Find Full Text PDFInositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) drive calcium signals involved in skeletal muscle excitation-transcription coupling and plasticity; IP(3)R subtype distribution and downstream events evoked by their activation have not been studied in human muscle nor has their possible alteration in Duchenne muscular dystrophy (DMD). We studied the expression and localization of IP(3)R subtypes in normal and DMD human muscle and in normal (RCMH) and dystrophic (RCDMD) human muscle cell lines. In normal muscle, both type 1 IP(3)Rs (IP(3)R1) and type 2 IP(3)Rs (IP(3)R2) show a higher expression in type II fibers, whereas type 3 IP(3)Rs (IP(3)R3) show uniform distribution.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2009
Heat shock proteins (HSPs) are a conserved family of cytoprotective polypeptides, synthesized by cells in response to stress. Hsp70 and heme oxygenase 1 (Hmox-1) are induced by a variety of cellular stressors in skeletal muscle, playing a role in long-term adaptations and muscle fibers regeneration. Though HSPs expression after exercise has been intensely investigated, the molecular mechanisms concerning Hsp70 and Hmox-1 induction are poorly understood.
View Article and Find Full Text PDFSkeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays.
View Article and Find Full Text PDFContracting skeletal muscle produces and releases interleukin-6 (IL-6) in high amounts. Nevertheless, the mechanisms underlying IL-6 expression are not understood. Because inositol-1,4,5-trisphosphate (IP(3))-mediated slow Ca(2+) signals evoked by depolarization of skeletal myotubes appears to play a role in the regulation of gene expression, we examined its involvement on IL-6 transcription.
View Article and Find Full Text PDF