Publications by authors named "Nevena Lj Stevanovic"

Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(HO)]CHSO} (1), {[Ag(vcz)]BF} (2) and {[Ag(vcz)]PF} (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry.

View Article and Find Full Text PDF

Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)]SbF (1, ecz is econazole), {[Ag(vcz)]SbF} (2, vcz is voriconazole), and [Ag(ctz)]SbF (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom.

View Article and Find Full Text PDF

is an opportunistic, Gram-negative bacterium, involved in severe infections associated with cystic fibrosis, pneumonia, burn wounds, ocular diseases, and immunosuppressive illnesses, and is a major cause of intrahospital infections. This bacterium is also one of the most commercially and biotechnologically significant microorganisms, since it can produce valuable biomolecules which represent a rich source of potential drug candidates. On the other hand, metal complexes have been used in medicine for both therapeutic and diagnostic purposes since ancient times.

View Article and Find Full Text PDF

In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl(azole)], where azole stands for imidazole (im, 1), 1-isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1-phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5).

View Article and Find Full Text PDF

Five novel copper(ii) complexes with pyridine-4,5-dicarboxylate esters as ligands, [Cu(NO)(py-2tz)(HO)]NO (1), [Cu(NO)(py-2metz)(HO)] (2), [Cu(NO)(py-2py)(HO)]·HO (3), [CuCl(py-2tz)] (4) and [CuCl(py-2metz)] (5) (py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate), were synthesized and structurally characterized by different spectroscopic and electrochemical methods. The structure of these complexes was determined by single-crystal X-ray diffraction analysis, confirming the bidentate coordination mode of the corresponding pyridine-4,5-dicarboxylate ester to the Cu(ii) ion through the nitrogen atoms. The antimicrobial potential of copper(ii) complexes 1-5 was assessed against two bacterial and two Candida species.

View Article and Find Full Text PDF

Copper(II) and zinc(II) complexes with clinically used antifungal drug fluconazole (fcz), {[CuCl(fcz)]5HO}, , and {[ZnCl(fcz)]·2CHOH}, , were prepared and characterized by spectroscopic and crystallographic methods. The polymeric structure of the complexes comprises four fluconazole molecules monodentately coordinated via the triazole nitrogen and two chlorido ligands. With respect to fluconazole, complex showed significantly higher antifungal activity against and .

View Article and Find Full Text PDF

Three novel Zn(II) complexes, [ZnCl(qz)] (1), [ZnCl(1,5-naph)] (2) and [ZnCl(4,7-phen)] (3), where qz is quinazoline, 1,5-naph is 1,5-naphthyridine and 4,7-phen is 4,7-phenanthroline, were synthesized by the reactions of ZnCl and the corresponding N-heterocyclic ligand in 1:2 molar ratio in ethanol at ambient temperature. The characterization of these complexes was done by NMR, IR and UV-Vis spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction analysis. Complexes 1 and 3 are mononuclear species, in which Zn(II) ion is tetrahedrally coordinated by two nitrogen atoms belonging to two qz or 4,7-phen ligands, respectively, and by two chloride anions, while complex 2 is a 1D coordination polymer that contains 1,5-naph as bridging ligand between two metal ions.

View Article and Find Full Text PDF

1,2-Bis(4-pyridyl)ethane (bpa) and 1,2-bis(4-pyridyl)ethene (bpe) were used for the synthesis of polynuclear silver(I) complexes, {[Ag(bpa)]NO} (), {[Ag(bpa)]CFSO HO} () and {[Ag(bpe)]CFSO} (). In complexes , the corresponding nitrogen-containing heterocycle acts as a bridging ligand between two Ag(I) ions. antimicrobial activity of these complexes, along with the ligands used for their synthesis, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi.

View Article and Find Full Text PDF

Infections of the cow udder leading to mastitis and lower milk quality are one of the biggest problems in the dairy industry worldwide. Unfortunately, therapeutic options for the treatment of cow mastitis are limited as a consequence of the development of pathogens that are resistant to conventionally used antibiotics. In the search for agents that will be active against cow mastitis associated pathogens, in the present study, five new silver(i) complexes with different chelating pyridine-4,5-dicarboxylate types of ligands, [Ag(NO)(py-2py)] (1), [Ag(NO)(py-2metz)] (2), [Ag(CHCN)(py-2py)]BF (3), [Ag(py-2tz)]BF (4) and [Ag(py-2metz)]BF (5), py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, were synthesized, structurally characterized and assessed for in vitro antimicrobial activity using both standard bioassay and clinical isolates from a contaminated milk sample obtained from a cow with mastitis.

View Article and Find Full Text PDF