Publications by authors named "Neven E"

Arterial media calcification refers to the pathological deposition of calcium phosphate crystals in the arterial wall. This pathology is a common and life-threatening complication in chronic kidney disease, diabetes and osteoporosis patients. Recently, we reported that the use of a TNAP inhibitor, SBI-425, attenuated arterial media calcification in a warfarin rat model.

View Article and Find Full Text PDF

Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification.

View Article and Find Full Text PDF

Current treatment strategies for chronic kidney disease (CKD) mainly focus on controlling risk factors. Metformin, a first-line drug for type 2 diabetes, exerts beneficial pleiotropic actions beyond its prescribed use and incipient data have revealed protective effects against the development of kidney impairment. This study evaluated the therapeutic efficacy of metformin and canagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor recently approved by the United States Food and Drug Administration to treat diabetic nephropathy, in slowing the progression of established non-diabetic CKD.

View Article and Find Full Text PDF

Sclerostin is a negative regulator of the Wnt/β-catenin signaling and is, therefore, an important inhibitor of bone formation and turnover. Because ectopic vascular calcification develops in a similar way to bone formation, one might reasonably attribute a role to sclerostin in this pathological process. Ectopic calcification, especially vascular calcification, importantly contributes to mortality in elderly and patients with diabetes, osteoporosis, chronic kidney disease (CKD), and hypertension.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine the learning curve for total operative time using a novel cutting guide positioning robotic assistant for total knee arthroplasty (raTKA). Additionally, we compared complications and final limb alignment between raTKA and manual TKA (mTKA), as well as accuracy to plan for raTKA cases.

Methods: We performed a retrospective cohort study on a series of patients (n = 180) that underwent raTKA (n = 90) using the ROSA Total Knee System or mTKA (n = 90) by one of three high-volume (> 200 cases per year) orthopaedic surgeons between December 2019 and September 2020, with minimum three-month follow-up.

View Article and Find Full Text PDF

Arterial media calcification (AMC) is predominantly regulated by vascular smooth muscle cells (VSMCs), which transdifferentiate into pro-calcifying cells. In contrast, there is little evidence for endothelial cells playing a role in the disease. The current study investigates cellular functioning and molecular pathways underlying AMC, respectively by, an ex vivo isometric organ bath set-up to explore the interaction between VSMCs and ECs and quantitative proteomics followed by functional pathway interpretation.

View Article and Find Full Text PDF
Article Synopsis
  • Arterial medial calcification (AMC) involves calcium phosphate buildup in arteries and shows key differences from normal bone formation despite some similarities.
  • N-acetylcysteine (NAC) was found to enhance osteoblast differentiation significantly while reducing calcification and cell death in vascular smooth muscle cells (VSMCs).
  • The study indicates that NAC's beneficial effects are primarily due to its ability to increase glutathione (GSH) levels, suggesting it may be a promising therapy for AMC without harming bone health.
View Article and Find Full Text PDF

Patients with chronic kidney disease (CKD) suffer from arterial media calcification and a disturbed bone metabolism. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes the calcification inhibitor pyrophosphate (PPi) into inorganic phosphate (Pi) and thereby stimulates arterial media calcification as well as physiological bone mineralization. This study investigates whether the TNAP inhibitor SBI-425, PPi or the combination of both inhibit arterial media calcification in an 0.

View Article and Find Full Text PDF

Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5'-nucleotidase and alkaline phosphatase.

View Article and Find Full Text PDF

Introduction: Sucroferric oxyhydroxide (PA21) is an efficacious, well-tolerated iron-based phosphate binder and a promising alternative to existing compounds. We compared the effects of PA21 with those of a conventional phosphate binder on renal function, mineral homeostasis and vascular calcification in a chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model.

Methods: To induce stable renal failure, rats were administered a 0.

View Article and Find Full Text PDF

Arterial media calcification is frequently seen in elderly and patients with chronic kidney disease (CKD), diabetes and osteoporosis. Pyrophosphate is a well-known calcification inhibitor that binds to nascent hydroxyapatite crystals and prevents further incorporation of inorganic phosphate into these crystals. However, the enzyme tissue-nonspecific alkaline phosphatase (TNAP), which is expressed in calcified arteries, degrades extracellular pyrophosphate into phosphate ions, by which pyrophosphate loses its ability to block vascular calcification.

View Article and Find Full Text PDF

Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG)-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG)-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.

View Article and Find Full Text PDF

Membrane transporters and receptors are responsible for balancing nutrient and metabolite levels to aid body homeostasis. Here, we report that proximal tubule cells in kidneys sense elevated endogenous, gut microbiome-derived, metabolite levels through EGF receptors and downstream signaling to induce their secretion by up-regulating the organic anion transporter-1 (OAT1). Remote metabolite sensing and signaling was observed in kidneys from healthy volunteers and rats in vivo, leading to induced OAT1 expression and increased removal of indoxyl sulfate, a prototypical microbiome-derived metabolite and uremic toxin.

View Article and Find Full Text PDF

Sclerostin is a well-known inhibitor of bone formation that acts on Wnt/β-catenin signaling. This manuscript considers the possible role of sclerostin in vascular calcification, a process that shares many similarities with physiological bone formation. Rats were exposed to a warfarin-containing diet to induce vascular calcification.

View Article and Find Full Text PDF

Biomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation remains elusive. Here, we report that biomineralization of bone and the vasculature is associated with extracellular poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerases in response to oxidative and/or DNA damage.

View Article and Find Full Text PDF

Background: Protein-bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS) have been associated with cardiovascular morbidity and mortality in patients with CKD. However, direct evidence for a role of these toxins in CKD-related vascular calcification has not been reported.

Methods: To study early and late vascular alterations by toxin exposure, we exposed CKD rats to vehicle, IS (150 mg/kg per day), or PCS (150 mg/kg per day) for either 4 days (short-term exposure) or 7 weeks (long-term exposure).

View Article and Find Full Text PDF

The use of geo-engineering materials to manage phosphorus in lakes has increased in recent years with aluminium and lanthanum based materials being most commonly applied. Hence the potential impact of the use of these compounds on human health is receiving growing interest. This review seeks to understand, evaluate and compare potential unintended consequences on human health and ecotoxicological risks associated with the use of lanthanum- and aluminium-based materials to modify chemical and ecological conditions in water bodies.

View Article and Find Full Text PDF

Over the past decades metformin has been the optimal first-line treatment for type 2 diabetes mellitus (T2DM). Only in the last few years, it has become increasingly clear that metformin exerts benign pleiotropic actions beyond its prescribed use and ongoing investigations focus on a putative beneficial impact of metformin on the kidney. Both acute kidney injury (AKI) and chronic kidney disease (CKD), two major renal health issues, often result in the need for renal replacement therapy (dialysis or transplantation) with a high socio-economic impact for the patients.

View Article and Find Full Text PDF

End-stage renal disease is strongly associated with progressive cardiovascular calcification (CVC) and there is currently no therapy targeted to treat CVC. SNF472 is an experimental formulation under development for treatment of soft tissue calcification. We have investigated the pharmacokinetics of SNF472 administration in rats and its inhibitory effects on CVC.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) causes dysregulation of mineral metabolism, vascular calcification and renal osteodystrophy, an entity called 'CKD-Mineral and Bone Disorder' (CKD-MBD). Here we determine whether metformin, an anti-diabetic drug, exerts favorable effects on progressive, severe CKD and concomitant mineral metabolism disturbances. Rats with CKD-MBD, induced by a 0.

View Article and Find Full Text PDF

Background: The cardiorenal syndrome (CRS) is a major health problem in our aging population. The term was introduced to cover disorders of the kidneys and heart, whereby dysfunction of one organ may induce dysfunction of the other. As the natural history of the CRS is mostly slow, hence difficult to explore in clinical trials, adequate animal models combining cardiovascular and renal disease are required.

View Article and Find Full Text PDF

Vascular calcification significantly contributes to mortality in chronic kidney disease (CKD) patients. Sevelamer and pyrophosphate (PPi) have proven to be effective in preventing vascular calcification, the former by controlling intestinal phosphate absorption, the latter by directly interfering with the hydroxyapatite crystal formation. Since most patients present with established vascular calcification, it is important to evaluate whether these compounds may also halt or reverse the progression of preexisting vascular calcification.

View Article and Find Full Text PDF

There is increasing interest in the colonic microbiota as a relevant source of uremic retention solutes accumulating in CKD. Renal disease can also profoundly affect the colonic microenvironment and has been associated with a distinct colonic microbial composition. However, the influence of CKD on the colonic microbial metabolism is largely unknown.

View Article and Find Full Text PDF

Because current rat models used to study chronic kidney disease (CKD)-related vascular calcification show consistent but excessive vascular calcification and chaotic, immeasurable, bone mineralization due to excessive bone turnover, they are not suited to study the bone-vascular axis in one and the same animal. Because vascular calcification and bone mineralization are closely related to each other, an animal model in which both pathologies can be studied concomitantly is highly needed. CKD-related vascular calcification in rats was induced by a 0.

View Article and Find Full Text PDF

Canonical Wnt signaling activity contributes to physiological and adaptive bone mineralization and is an essential player in bone remodeling. Sclerostin is a prototypic soluble canonical Wnt signaling pathway inhibitor that is produced in osteocytes and blocks osteoblast differentiation and function. Therefore, sclerostin is a potent inhibitor of bone formation and mineralization.

View Article and Find Full Text PDF