Publications by authors named "Neva P Meyer"

Background: The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region.

View Article and Find Full Text PDF
Article Synopsis
  • Wild organisms face various parasites, necessitating a balance between an effective immune response and avoiding harmful overreactions.
  • Research on immune responses mostly comes from lab studies, overlooking the genetic and environmental factors in wild populations.
  • A study on two Alaskan stickleback populations showed different immune gene expression patterns in response to the same parasite, revealing how wild populations uniquely adapt to infections.
View Article and Find Full Text PDF

The cestode is a common parasite in freshwater threespine stickleback populations, imposing strong fitness costs on their hosts. Given this, it is surprising how little is known about the timing and development of infections in natural stickleback populations. Previous work showed that young-of-year stickleback can get infected shortly after hatching.

View Article and Find Full Text PDF

The mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling plays a key role in establishing the dorsal-ventral (D-V) axis and limiting the neuroectoderm to one side of that axis, leading to speculation about the conserved evolution of centralized nervous systems. Studies outside of insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria.

View Article and Find Full Text PDF

Sipuncula is a clade of unsegmented marine worms that are currently placed among the basal radiation of conspicuously segmented Annelida. Their new location provides a unique opportunity to reinvestigate the evolution and development of segmented body plans. Neural segmentation is clearly evident during ganglionic ventral nerve cord (VNC) formation across Sedentaria and Errantia, which includes the majority of annelids.

View Article and Find Full Text PDF

In the deuterostomes and ecdysozoans that have been studied (e.g. chordates and insects), neural fate specification relies on signaling from surrounding cells.

View Article and Find Full Text PDF

Background: How nervous systems evolved remains an unresolved question. Previous studies in vertebrates and arthropods revealed that homologous genes regulate important neurogenic processes such as cell proliferation and differentiation. However, the mechanisms through which such homologs regulate neurogenesis across different bilaterian clades are variable, making inferences about nervous system evolution difficult.

View Article and Find Full Text PDF

Background: Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems.

Results: We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ.

View Article and Find Full Text PDF

Background: Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation.

Methods: To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7) and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns.

View Article and Find Full Text PDF

Like most polychaete annelids, Capitella teleta (formerly Capitella sp. I) exhibits a highly stereotypic program of early development known as spiral cleavage. Animals with spiral cleavage have diverse body plans, and homologous embryonic cells can be readily identified among distantly related animals.

View Article and Find Full Text PDF

The transcription factor COE (collier/olfactory-1/early B cell factor) is an unusual basic helix-loop-helix transcription factor as it lacks a basic domain and is maintained as a single copy gene in the genomes of all currently analysed non-vertebrate Metazoan genomes. Given the unique features of the COE gene, its proposed ancestral role in the specification of chemosensory neurons and the wealth of functional data from vertebrates and Drosophila, the evolutionary history of the COE gene can be readily investigated. We have examined the ways in which COE expression has diversified among the Metazoa by analysing its expression from representatives of four disparate invertebrate phyla: Ctenophora (Mnemiopsis leidyi); Mollusca (Haliotis asinina); Annelida (Capitella teleta and Chaetopterus) and Echinodermata (Strongylocentrotus purpuratus).

View Article and Find Full Text PDF

Background: zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated.

View Article and Find Full Text PDF

Background: The polychaete annelid Capitella teleta (formerly Capitella sp. I) develops by spiral cleavage and has been the focus of several recent developmental studies aided by a fully sequenced genome. Fate mapping in polychaetes has lagged behind other spiralian taxa, because of technical limitations.

View Article and Find Full Text PDF

Intertaxonomic comparisons are important for understanding neurogenesis and evolution of nervous systems, but high-resolution, cellular studies of early central nervous system development and the molecular mechanisms controlling this process in lophotrochozoans are still lacking. We provide a detailed cellular and molecular description of early brain neurogenesis in a lophotrochozoan annelid, Capitella sp. I.

View Article and Find Full Text PDF

A concentration gradient of Shh is thought to pattern the ventral neural tube, and these ventral cell types are absent in shh-/- mice. Based on in vitro and genetic studies, the zinc finger-containing transcription factors Gli 1, 2, and 3 are mediators of the Shh intracellular response. The floorplate and adjacent cell types are absent in gli1-/-;gli2-/- mice, but part of the Shh-/- phenotype in the neural tube is alleviated in the Shh-/-;gli3-/- double mutant.

View Article and Find Full Text PDF