Enterococcus faecalis V583 is a vancomycin-resistant clinical isolate which belongs to the hospital-adapted clade, CC2. This strain harbours several factors that have been associated with virulence, including the fsr quorum-sensing regulatory system that is known to control the expression of GelE and SprE proteases. To discriminate between genes directly regulated by Fsr, and those indirectly regulated as the result of protease expression or activity, we compared gene expression in isogenic mutants of V583 variously defective in either Fsr quorum sensing or protease expression.
View Article and Find Full Text PDFEnterococcus faecalis is a nosocomial opportunistic pathogen, but is also found in fermented food products where it plays a fundamental role in the fermentation process. Previously, we have described the non-starter E. faecalis cheese isolate QA29b as harboring virulence genes and proven to be virulent in Galleria mellonella virulence model.
View Article and Find Full Text PDFThe concomitant presence of a complete fsr quorum-sensing system and gelE-sprE operons in Enterococcus faecalis is known to be essential for the detection of gelatinase activity. However, there are reports of the absence of gelatinase activity despite the presence of complete fsr and gelE loci. In order to understand this incongruence between genotype and phenotype we sequenced fsr and gelE loci of the E.
View Article and Find Full Text PDFDespite the existence of various virulence factors in the Enterococcus genus, enterococcal virulence is still a debated issue. A main consideration is the detection of the same virulence genes in strains isolated from nosocomial or community-acquired infections, and from food products. The goal of this study was to evaluate the roles of two well-characterized enterococcal virulence factors, Fsr and gelatinase, in the potential virulence of Enterococcus faecalis food strains.
View Article and Find Full Text PDF