Angiogenesis, the formation of new blood vessels, is a fundamental process in both physiological repair mechanisms and pathological conditions, including cancer and chronic inflammation. Hydrogels are commonly used as in vitro models to mimic the extracellular matrix (ECM) and support endothelial cell behavior during angiogenesis. Mesenchymal stem cells further augment cell and tissue growth and are therefore widely used in regenerative medicine.
View Article and Find Full Text PDFThe potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type.
View Article and Find Full Text PDFAims: To investigate the effect of tumor necrosis factor (TNF) on the growth of human periodontal ligament (PDL) cells, their osteogenic differentiation and modulation of their matrix secretion in vitro.
Methods: The influence of 10 ng/ml TNF on proliferation and metabolic activity of PDL cells was analyzed by cell counting (DAPI [4',6-diamidino-2-phenylindole] staining) and the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. In addition, cells were cultured under control conditions and osteogenic conditions (media containing 10 mM β-glycerophosphate).
A novel scaffold design has been created to enhance tissue engineering and regenerative medicine by optimizing the controlled, prolonged release of Hepatocyte Growth Factor (HGF), a powerful chemoattractant for endogenous mesenchymal stem cells. We present a new stacked scaffold that is made up of three different fibrin gel layers, each of which has HGF integrated into the matrix. The design attempts to preserve HGF's regenerative properties for long periods of time, which is necessary for complex tissue regeneration.
View Article and Find Full Text PDFTissue engineering is a steadily growing field of research due to its wide-ranging applicability in the field of regenerative medicine. Application-dependent mechanical properties of a scaffold material as well as its biocompatibility and tailored functionality represent particular challenges. Here the properties of fibrin-based hydrogels reinforced by functional cytocompatible poly(N-vinylcaprolactam)-based (PVCL) microgels are studied and evaluated.
View Article and Find Full Text PDFBackground: Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing.
View Article and Find Full Text PDFPeriodontal defects' localization affects wound healing and bone remodeling, with faster healing in the upper jaw compared to the lower jaw. While differences in blood supply, innervation, and odontogenesis contribute, cell-intrinsic variances may exist. Few studies explored cell signaling in periodontal ligament stem cells (PDLSC), overlooking mandible-maxilla disparitiesUsing kinomics technology, we investigated molecular variances in PDLSC.
View Article and Find Full Text PDFThis study focuses on enhancing controllable fibrin-based hydrogels for tissue engineering, addressing existing weaknesses. By integrating a novel copolymer, we improved the foundation for cell-based angiogenesis with adaptable structural features. Tissue engineering often faces challenges like waste disposal and nutrient supply beyond the 200 µm diffusion limit.
View Article and Find Full Text PDFAt the time when pathogens are developing robust resistance to antibiotics, the demand for implant surfaces with microbe-killing capabilities has significantly risen. To achieve this goal, profound understanding of the underlying mechanisms is crucial. Our study demonstrates that graphene oxide (GO) nano films deposited on stainless steel (SS316L) exhibit superior antibacterial features.
View Article and Find Full Text PDFBiomacromolecules
February 2024
Stimuli-responsive microgels with ionizable functional groups offer versatile applications, e.g., by the uptake of oppositely charged metal ions or guest molecules such as drugs, dyes, or proteins.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have the potential to differentiate into multiple lineages and can be harvested relatively easily from adults, making them a promising cell source for regenerative therapies. While it is well-known how to consistently differentiate MSCs into adipose, chondrogenic, and osteogenic lineages by treatment with biochemical factors, the number of studies exploring how to achieve this with mechanical signals is limited. A relatively unexplored area is the effect of cyclic forces on the MSC differentiation.
View Article and Find Full Text PDFPatients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD.
View Article and Find Full Text PDFHydrogels as scaffolds in tissue engineering have gained increasing attention in recent years. Natural hydrogels, e.g.
View Article and Find Full Text PDFTherapies using dental pulp stem cells (DPSCs) or stem cell-derived extracellular vesicles (EVs) have shown promising applications for bone tissue engineering. This in vitro experiment evaluated the joint osteogenic capability of DPSCs and EVs on alloplastic (maxresorp), allogeneic (maxgraft), and xenogeneic (cerabone) bone grafts. We hypothesize that osteogenic differentiation and the proliferation of human DPSCs vary between bone grafts and are favorable under the influence of EVs.
View Article and Find Full Text PDFOne of the major components in cementum extracellular matrix is bone sialoprotein (BSP). BSP knockout (Ibsp) mice were reported to have a nonfunctional hypo-mineralized cementum, as well as detachment and disorganization of the periodontal ligament tissue. However, studies investigating the influence of Ibsp in cementoblasts are missing yet.
View Article and Find Full Text PDFHemocompatibility is the most significant criterion for blood-contacting materials in successful in vivo applications. Prior to the clinical tests, in vitro analyses must be performed on the biomaterial surfaces in accordance with the ISO 10993-4 standards. Designing a bio-functional material requires engineering the surface structure and chemistry, which significantly influence the blood cell activity according to earlier studies.
View Article and Find Full Text PDFBackground: A rigorous search for alternatives to autogenous bone grafts to avoid invasiveness at the donor site in the treatment of maxillomandibular bone defects. Researchers have used alloplastic, allogeneic, and xenogeneic bone graft substitutes in clinical studies with varying degrees of success, although their in vitro effects on stem cells remain unclear. Dental pulp stem cells (DPSCs) can potentially enhance the bone regeneration of bone graft substitutes.
View Article and Find Full Text PDFBackground: Clinical experience indicates that wounds in alveolar bone and periodontal tissue heal faster and more efficiently in the maxilla compared with the mandible. Since stem cells are known to have a decisive influence on wound healing and tissue regeneration, the aim of this study was to determine whether differences in proliferation and differentiation of periodontal ligament stem cells (PDLSC) from upper (u-PDLSC) and lower jaw (l-PDLSC) contribute to the enhanced wound healing in the maxilla.
Methods: u-PDLSC and l-PDLSC from the same donor were harvested from the periodontal ligament of extracted human maxillary and mandibular third molars.
Mechanical compression simulating orthodontic tooth movement in in vitro models induces pro-inflammatory cytokine expression in periodontal ligament (PDL) cells. Our previous work shows that TLR4 is involved in this process. Here, primary PDL cells are isolated and characterized to better understand the cell signaling downstream of key molecules involved in the process of sterile inflammation via TLR4.
View Article and Find Full Text PDFWithin the heterogenous pool of bone marrow stromal cells, mesenchymal stromal cells (MSCs) are of particular interest because of their hematopoiesis-supporting capacities, contribution to disease progression, therapy resistance, and leukemic initiation. Cultured bone marrow-derived stromal cells (cBMSCs) are used for in vitro modeling of hematopoiesis-stroma interactions, validation of disease mechanisms, and screening for therapeutic targets. Here, we place cBMSCs (mouse and human) in a bone marrow tissue context by systematically comparing the transcriptome of plastic-adherent cells on a single-cell level with in vivo counterparts.
View Article and Find Full Text PDFPurpose: To investigate in vitro the impact of fibroblast growth factor 1 (FGF1) in comparison to ascorbic acid (AscA) on human periodontal ligament fibroblast (HPdLF) growth, their osteogenic differentiation, and modulation of their inflammatory reaction to mechanical stress.
Methods: The influence of different concentrations of FGF1 (12.5-200 ng/mL) on growth and proliferation of HPdLF cells was analyzed over 20 days by counting cell numbers and the percentage of Ki67-positive cells.
When people anticipate financial support, they may reduce preventive effort. We conjecture that the source of financial support can mitigate this moral hazard effect due to social preferences. We compare effort choices when another individual voluntarily provides financial support against effort choices under purely monetary incentives.
View Article and Find Full Text PDFCementoblasts, located on the tooth root surface covered with cementum, are considered to have tooth protecting abilities. They prevent tissue damage and secure teeth anchorage inside the periodontal ligament during mechanical stress. However, the involvement of cementoblasts in mechanical compression induced periodontal remodeling needs to be identified and better understood.
View Article and Find Full Text PDFThe anticoagulation treatment of cardiovascular patients, which is mandatory after implantation of heart valves or stents, has significantly adverse effects on life quality. This treatment can be reduced or even circumvented by developing novel antithrombogenic surfaces of blood-contacting implants. Thus, we aim to discover materials exhibiting outstanding hemocompatibility compared to other available synthetic materials.
View Article and Find Full Text PDF