Statistical learning has been proposed as a mechanism to structure and segment the continuous flow of information in several sensory modalities. Previous studies proposed that the medial temporal lobe, and in particular the hippocampus, may be crucial to parse the stream in the visual modality. However, the involvement of the hippocampus in auditory statistical learning, and specifically in speech segmentation is less clear.
View Article and Find Full Text PDFWhen learning a new language, one must segment words from continuous speech and associate them with meanings. These complex processes can be boosted by attentional mechanisms triggered by multi-sensory information. Previous electrophysiological studies suggest that brain oscillations are sensitive to different hierarchical complexity levels of the input, making them a plausible neural substrate for speech parsing.
View Article and Find Full Text PDFHumans continuously learn new information. Here, we examined the temporal brain dynamics of explicit verbal associative learning between unfamiliar items. In the first experiment, 25 adults learned object-pseudoword associations during a 5-day training program allowing us to track the N400 dynamics across learning blocks within and across days.
View Article and Find Full Text PDFThe mismatch negativity (MMN) is an event related brain potential (ERP) elicited by unpredicted sounds presented in a sequence of repeated auditory stimuli. The neural sources of the MMN have been previously attributed to a fronto-temporo-parietal network which crucially overlaps with the so-called auditory dorsal stream, involving inferior and middle frontal, inferior parietal, and superior and middle temporal regions. These cortical areas are structurally connected by the arcuate fasciculus (AF), a three-branch pathway supporting the feedback-feedforward loop involved in auditory-motor integration, auditory working memory, storage of acoustic templates, as well as comparison and update of those templates.
View Article and Find Full Text PDFObjective: Of current interest in aphasia research is the relevance of what we can learn from studying word learning ability in aphasia. In a preliminary study, we addressed two issues related to the novel word learning ability of individuals with aphasia. First, as word learning engages large-scale cognitive-linguistic systems (language skills, verbal short-term memory (STM), other memory and executive functions), we probed whether novel word learning practice in three people with aphasia could stimulate these language-related systems.
View Article and Find Full Text PDFMusic learning has received increasing attention in the last decades due to the variety of functions and brain plasticity effects involved during its practice. Most previous reports interpreted the differences between music experts and laymen as the result of training. However, recent investigations suggest that these differences are due to a combination of genetic predispositions with the effect of music training.
View Article and Find Full Text PDFThe effect of music-supported therapy (MST) as a tool to restore hemiparesis of the upper extremity after a stroke has not been appropriately contrasted with conventional therapy. The aim of this trial was to test the effectiveness of adding MST to a standard rehabilitation program in subacute stroke patients. A randomized controlled trial was conducted in which patients were randomized to MST or conventional therapy in addition to the rehabilitation program.
View Article and Find Full Text PDF