Publications by authors named "Neus Garcia"

Background: Bidirectional communication between presynaptic and postsynaptic components contribute to the homeostasis of the synapse. In the neuromuscular synapse, the arrival of the nerve impulse at the presynaptic terminal triggers the molecular mechanisms associated with ACh release, which can be retrogradely regulated by the resulting muscle contraction. This retrograde regulation, however, has been poorly studied.

View Article and Find Full Text PDF

At the neuromuscular junction (NMJ), motor neurons and myocytes maintain a bidirectional communication that guarantees adequate functionality. Thus, motor neurons' firing pattern, which is influenced by retrograde muscle-derived neurotrophic factors, modulates myocyte contractibility. Myocytes can be fast-twitch fibers and become easily fatigued or slow-twitch fibers and resistant to fatigue.

View Article and Find Full Text PDF

In recent years, we have studied by immunohistochemistry, intracellular recording, and western blotting the role of the muscarinic acetylcholine receptors (mAChRs; M, M, and M subtypes) in the mammalian neuromuscular junction (NMJ) during development and in the adult. Here, we evaluate our published data to emphasize the mAChRs' relevance in developmental synaptic elimination and their crosstalk with other metabotropic receptors, downstream kinases, and voltage-gated calcium channels (VGCCs). The presence of mAChRs in the presynaptic membrane of motor nerve terminals allows an autocrine mechanism in which the secreted acetylcholine influences the cell itself in feedback.

View Article and Find Full Text PDF

During the nervous system development, synapses are initially overproduced. In the neuromuscular junction (NMJ) however, competition between several motor nerve terminals and the synapses they made ends with the maturation of only one axon. The competitive signaling between axons is mediated by the differential activity-dependent release of the neurotransmitter ACh, co-transmitters, and neurotrophic factors.

View Article and Find Full Text PDF

During the development of the nervous system, synaptogenesis occurs in excess though only the appropriate connections consolidate. At the neuromuscular junction, competition between several motor nerve terminals results in the maturation of a single axon and the elimination of the others. The activity-dependent release of transmitter, cotransmitters, and neurotrophic factors allows the direct mutual influence between motor axon terminals through receptors such as presynaptic muscarinic ACh autoreceptors and the tropomyosin-related kinase B neurotrophin receptor.

View Article and Find Full Text PDF

Physical exercise improves motor control and related cognitive abilities and reinforces neuroprotective mechanisms in the nervous system. As peripheral nerves interact with skeletal muscles at the neuromuscular junction, modifications of this bidirectional communication by physical activity are positive to preserve this synapse as it increases quantal content and resistance to fatigue, acetylcholine receptors expansion, and myocytes' fast-to-slow functional transition. Here, we provide the intermediate step between physical activity and functional and morphological changes by analyzing the molecular adaptations in the skeletal muscle of the full BDNF/TrkB downstream signaling pathway, directly involved in acetylcholine release and synapse maintenance.

View Article and Find Full Text PDF

Muscarinic acetylcholine receptor 1 subtype (M ) and muscarinic acetylcholine receptor 2 subtype (M ) presynaptic muscarinic receptor subtypes increase and decrease, respectively, neurotransmitter release at neuromuscular junctions. M involves protein kinase A (PKA), although the muscarinic regulation to form and inactivate the PKA holoenzyme is unknown. Here, we show that M signaling inhibits PKA by downregulating Cβ subunit, upregulating RIIα/β and liberating RIβ and RIIα to the cytosol.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) promotes neuron survival in adulthood in the central nervous system. In the peripheral nervous system, BDNF is a contraction-inducible protein that, through its binding to tropomyosin-related kinase B receptor (TrkB), contributes to the retrograde neuroprotective control done by muscles, which is necessary for motor neuron function. BDNF/TrkB triggers downstream presynaptic pathways, involving protein kinase C, essential for synaptic function and maintenance.

View Article and Find Full Text PDF
Article Synopsis
  • During NMJ development, synapses are initially overproduced and subsequently refined through receptor sensing of neurotransmitters, influencing axonal competition and elimination.
  • Selective modulations of PKA and PKC were applied to mouse muscles to assess their role in axon and receptor morphology at NMJs.
  • Findings indicate PKA delays axonal loss and promotes receptor maturation, while PKC drives axonal elimination and receptor development, highlighting their opposing roles in synapse elimination during development.
View Article and Find Full Text PDF

Nerve-induced muscle contraction regulates the BDNF/TrkB neurotrophic signalling to retrogradely modulate neurotransmission and protect the neuromuscular junctions and motoneurons. In muscles with amyotrophic lateral sclerosis, this pathway is strongly misbalanced and neuromuscular junctions are destabilized, which may directly cause the motoneuron degeneration and muscular atrophy observed in this disease. Here, we sought to demonstrate (1) that physical exercise, whose recommendation has been controversial in amyotrophic lateral sclerosis, would be a good option for its therapy, because it normalizes and improves the altered neurotrophin pathway and (2) a plausible molecular mechanism underlying its positive effect.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive motor weakness. It is accepted that it is caused by motoneuron degeneration leading to a decrease in muscle stimulation. However, ALS is being redefined as a distal axonopathy, in that neuromuscular junction dysfunction precedes and may even influence motoneuron loss.

View Article and Find Full Text PDF

Protein kinase C (PKC) and substrates like SNAP-25 regulate neurotransmission. At the neuromuscular junction (NMJ), PKC promotes neurotransmitter release during synaptic activity. Thirty minutes of muscle contraction enhances presynaptic PKC isoform levels, specifically cPKCβI and nPKCε, through retrograde BDNF/TrkB signaling.

View Article and Find Full Text PDF

Munc18-1, a neuron-specific member of the Sec1/Munc18 family, is involved in neurotransmitter release by binding tightly to syntaxin. Munc18-1 is phosphorylated by PKC on Ser-306 and Ser-313 which reduces the amount of Munc18-1 able to bind syntaxin. We have previously identified that PKC is involved in neurotransmitter release when continuous electrical stimulation imposes a moderate activity on the NMJ and that muscle contraction through TrkB has an important impact on presynaptic PKC isoforms levels, specifically cPKCβI and nPKCε.

View Article and Find Full Text PDF

In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors.

View Article and Find Full Text PDF

Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1).

View Article and Find Full Text PDF

Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M, M and M), adenosine receptors (AR; A and A) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination.

View Article and Find Full Text PDF

This article was migrated. The article was marked as recommended. This describes the experience of University School of Medicine (URV) with the early introduction of pre-clinical skills learning in the undergraduate medical curricula to monitor and assessing these competencies as a prerequisite for medical students accessing their training in clinical settings.

View Article and Find Full Text PDF

The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression at the neuromuscular junction (NMJ).

View Article and Find Full Text PDF

During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon.

View Article and Find Full Text PDF

The development of the nervous system involves the initial overproduction of synapses, which promotes connectivity. Hebbian competition between axons with different activities leads to the loss of roughly half of the overproduced elements and this refines connectivity. We used quantitative immunohistochemistry to investigate, in the postnatal day 7 (P7) to P9 neuromuscular junctions, the involvement of muscarinic receptors (muscarinic acetylcholine autoreceptors and the M1, M2, and M4 subtypes) and adenosine receptors (A1 and A2A subtypes) in the control of axonal elimination after the mouse levator auris longus muscle had been exposed to selective antagonists in vivo.

View Article and Find Full Text PDF

The development of the nervous system involves the overproduction of synapses but connectivity is refined by Hebbian activity-dependent axonal competition. The newborn skeletal muscle fibers are polyinnervated but, at the end of the competition process, some days later, become innervated by a single axon. We used quantitative confocal imaging of the autofluorescent axons from transgenic B6.

View Article and Find Full Text PDF

Background: The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity.

View Article and Find Full Text PDF

Background: Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission.

View Article and Find Full Text PDF

Background: Protein kinase C (PKC) regulates a variety of neural functions, including neurotransmitter release. Although various PKC isoforms can be expressed at the synaptic sites and specific cell distribution may contribute to their functional diversity, little is known about the isoform-specific functions of PKCs in neuromuscular synapse. The present study is designed to examine the location of the novel isoform nPKCε at the neuromuscular junction (NMJ), their synaptic activity-related expression changes, its regulation by muscle contraction, and their possible involvement in acetylcholine release.

View Article and Find Full Text PDF

In rodents exposed to 3,3'-iminodipropionitrile (IDPN), neurofilaments (NFs) accumulate in swollen proximal axon segments; this also occurs in motor neurons of patients with amyotrophic lateral sclerosis. We hypothesized that early loss of NFs in neuromuscular junctions (NMJs) in IDPN proximal neuropathy would result in neuromuscular dysfunction and lead to neuromuscular detachment. Adult male rats were given 0 or 15 mmol/L IDPN in drinking water for up to 1 year.

View Article and Find Full Text PDF