Publications by authors named "Neukum G"

The structure of the upper layer of a comet is a product of its surface activity. The Rosetta Lander Imaging System (ROLIS) on board Philae acquired close-range images of the Agilkia site during its descent onto comet 67P/Churyumov-Gerasimenko. These images reveal a photometrically uniform surface covered by regolith composed of debris and blocks ranging in size from centimeters to 5 meters.

View Article and Find Full Text PDF

Vesta's surface is characterized by abundant impact craters, some with preserved ejecta blankets, large troughs extending around the equatorial region, enigmatic dark material, and widespread mass wasting, but as yet an absence of volcanic features. Abundant steep slopes indicate that impact-generated surface regolith is underlain by bedrock. Dawn observations confirm the large impact basin (Rheasilvia) at Vesta's south pole and reveal evidence for an earlier, underlying large basin (Veneneia).

View Article and Find Full Text PDF

The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.

View Article and Find Full Text PDF
Article Synopsis
  • Since 2004, the Cassini spacecraft has captured detailed images of Saturn's moon Iapetus, revealing numerous impact craters with resolutions of about 10 meters per pixel.
  • Small bright craters on the dark side suggest that the dark material has a thickness of only a few meters, while temperature variations lead to features like water-ice sublimation patterns on crater walls.
  • Observations show a color difference between the moon's leading and trailing sides, indicating that the redder colors on the leading side likely come from external sources and contributed to the moon's global albedo differences.
View Article and Find Full Text PDF

Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.

View Article and Find Full Text PDF

Cassini has identified a geologically active province at the south pole of Saturn's moon Enceladus. In images acquired by the Imaging Science Subsystem (ISS), this region is circumscribed by a chain of folded ridges and troughs at approximately 55 degrees S latitude. The terrain southward of this boundary is distinguished by its albedo and color contrasts, elevated temperatures, extreme geologic youth, and narrow tectonic rifts that exhibit coarse-grained ice and coincide with the hottest temperatures measured in the region.

View Article and Find Full Text PDF

The majority of volcanic products on Mars are thought to be mafic and effusive. Explosive eruptions of basic to ultrabasic chemistry are expected to be common, but evidence for them is rare and mostly confined to very old surface features. Here we present new image and topographic data from the High Resolution Stereo Camera that reveal previously unknown traces of an explosive eruption at 30 degrees N and 149 degrees E on the northwestern flank of the shield volcano Hecates Tholus.

View Article and Find Full Text PDF

It is thought that the Cerberus Fossae fissures on Mars were the source of both lava and water floods two to ten million years ago. Evidence for the resulting lava plains has been identified in eastern Elysium, but seas and lakes from these fissures and previous water flooding events were presumed to have evaporated and sublimed away. Here we present High Resolution Stereo Camera images from the European Space Agency Mars Express spacecraft that indicate that such lakes may still exist.

View Article and Find Full Text PDF

Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.

View Article and Find Full Text PDF

Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues.

View Article and Find Full Text PDF

The Cassini Imaging Science Subsystem (ISS) began observing Saturn in early February 2004. From analysis of cloud motions through early October 2004, we report vertical wind shear in Saturn's equatorial jet and a maximum wind speed of approximately 375 meters per second, a value that differs from both Hubble Space Telescope and Voyager values. We also report a particularly active narrow southern mid-latitude region in which dark ovals are observed both to merge with each other and to arise from the eruptions of large, bright storms.

View Article and Find Full Text PDF

The Cassini Imaging Science Subsystem acquired high-resolution imaging data on the outer Saturnian moon, Phoebe, during Cassini's close flyby on 11 June 2004 and on Iapetus during a flyby on 31 December 2004. Phoebe has a heavily cratered and ancient surface, shows evidence of ice near the surface, has distinct layering of different materials, and has a mean density that is indicative of an ice-rock mixture. Iapetus's dark leading side (Cassini Regio) is ancient, heavily cratered terrain bisected by an equatorial ridge system that reaches 20 kilometers relief.

View Article and Find Full Text PDF

Images acquired of Saturn's rings and small moons by the Cassini Imaging Science Subsystem (ISS) during the first 9 months of Cassini operations at Saturn have produced many new findings. These include new saturnian moons; refined orbits of new and previously known moons; narrow diffuse rings in the F-ring region and embedded in gaps within the main rings; exceptionally fine-scale ring structure in moderate- to high-optical depth regions; new estimates for the masses of ring-region moons, as well as ring particle properties in the Cassini division, derived from the analysis of linear density waves; ring particle albedos in select ring regions; and never-before-seen phenomena within the rings.

View Article and Find Full Text PDF

The large-area coverage at a resolution of 10-20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago.

View Article and Find Full Text PDF

The Cassini Imaging Science Subsystem acquired about 26,000 images of the Jupiter system as the spacecraft encountered the giant planet en route to Saturn. We report findings on Jupiter's zonal winds, convective storms, low-latitude upper troposphere, polar stratosphere, and northern aurora. We also describe previously unseen emissions arising from Io and Europa in eclipse, a giant volcanic plume over Io's north pole, disk-resolved images of the satellite Himalia, circumstantial evidence for a causal relation between the satellites Metis and Adrastea and the main jovian ring, and information on the nature of the ring particles.

View Article and Find Full Text PDF

Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell.

View Article and Find Full Text PDF

The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature.

View Article and Find Full Text PDF

The first images of the asteroid 243 Ida from Galileo show an irregular object measuring 56-kilometers by 24 kilometers by 21 kilometers. Its surface is rich in geologic features, including systems of grooves, blocks, chutes, albedo features, crater chains, and a full range of crater morphologies. The largest blocks may be distributed nonuniformly across the surface; lineaments and dark-floored craters also have preferential locations.

View Article and Find Full Text PDF

Multispectral images obtained during the Galileo probe's second encounter with the moon reveal the compositional nature of the north polar regions and the northeastern limb. Mare deposits in these regions are found to be primarily low to medium titanium lavas and, as on the western limb, show only slight spectral heterogeneity. The northern light plains are found to have the spectral characteristics of highlands materials, show little evidence for the presence of cryptomaria, and were most likely emplaced by impact processes regardless of their age.

View Article and Find Full Text PDF

Galileo images of Gaspra reveal it to be an irregularly shaped object (19 by 12 by 11 kilometers) that appears to have been created by a catastrophic collisional disruption of a precursor parent body. The cratering age of the surface is about 200 million years. Subtle albedo and color variations appear to correlate with morphological features: Brighter materials are associated with craters especially along the crests of ridges, have a stronger 1-micrometer absorption, and may represent freshly excavated mafic materials; darker materials exhibiting a significantly weaker 1-micrometer absorption appear concentrated in interridge areas.

View Article and Find Full Text PDF

Multispectral images of the lunar western limb and far side obtained from Galileo reveal the compositional nature of several prominent lunar features and provide new information on lunar evolution. The data reveal that the ejecta from the Orientale impact basin (900 kilometers in diameter) lying outside the Cordillera Mountains was excavated from the crust, not the mantle, and covers pre-Orientale terrain that consisted of both highland materials and relatively large expanses of ancient mare basalts. The inside of the far side South Pole-Aitken basin (>2000 kilometers in diameter) has low albedo, red color, and a relatively high abundance of iron- and magnesium-rich materials.

View Article and Find Full Text PDF

Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves.

View Article and Find Full Text PDF