Publications by authors named "Neubi F Xavier Jr"

Catalytic methane decomposition (CMD) is receiving much attention as a promising application for hydrogen production. Due to the high energy required for breaking the C-H bonds of methane, the choice of catalyst is crucial to the viability of this process. However, atomistic insights for the CMD mechanism on carbon-based materials are still limited.

View Article and Find Full Text PDF

The doping of graphitic and nanocarbon structures with nonmetal atoms allows for the tuning of surface electronic properties and the generation of new active sites, which can then be exploited for several catalytic applications. In this work, we investigate the direct conversion of methane into H and CH over Klein-type zigzag graphene edges doped with nitrogen, boron, phosphorus and silicon. We combine Density Functional Theory (DFT) and microkinetic modeling to systematically investigate the reaction network and determine the most efficient edge decoration.

View Article and Find Full Text PDF

Organic molecular thin-films are employed for manufacturing a wide variety of electronic devices, including memory devices and transistors. A precise description of the atomic-scale interactions in aromatic carbon systems is of paramount importance for the design of organic thin-films and carbon-based nanomaterials. Here we investigate the binding and structure of pyrazine on graphite with neutron diffraction and spin-echo measurements.

View Article and Find Full Text PDF

Evidence about the presence of glycine in the interstellar medium (ISM) has been motivating studies aiming the understanding of the chemical behavior of this amino acid in such environment. Since glycine is expected to be predominantly found in the ISM in solid phase, this work focuses on the search for a theoretical methodology for obtaining a molecular cluster for α-glycine that provides a good description of the geometry of the unit cell and lattice energy. Calculations have been performed using the B3LYP-D3, PBE0-D3, and WB97X-D3 functionals, with def2-SVP, def2-TZVP, def2-TZVPP, and def2-QZVPP basis sets for two models: (a) the unit cell, containing 4 glycine units, and (b) the 2 × 1 × 2 expanded cell, with 16 glycine units.

View Article and Find Full Text PDF