Publications by authors named "Neuber S"

Electrically conductive films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) are usually formed by spin coating of aqueous dispersions with PEDOT:PSS nanoparticles. To better understand the film formation, the adsorption conditions are investigated using dip coating and a flow cell with different flow rates. Multilayer films are formed by sequential adsorption of oppositely charged macromolecules or nanoparticles.

View Article and Find Full Text PDF

Heart failure (HF) is a common disease associated with high morbidity and mortality rates despite advanced pharmacological therapies. Heart transplantation remains the gold standard therapy for end-stage heart failure; however, its application is curtailed by the persistent shortage of donor organs. Over the past two decades, mechanical circulatory support, notably Left Ventricular Assist Devices (LVADs), have been established as an option for patients waiting for a donor organ.

View Article and Find Full Text PDF

Numerous genetic and epidemiologic studies have demonstrated an association between elevated levels of lipoprotein(a) (Lp[a]) and cardiovascular disease. As a result, lowering Lp(a) levels is widely recognized as a promising strategy for reducing the risk of new-onset coronary heart disease, stroke, and heart failure. Lp(a) consists of a low-density lipoprotein-like particle with covalently linked apolipoprotein A (apo[a]) and apolipoprotein B-100, which explains its pro-thrombotic, pro-inflammatory, and pro-atherogenic properties.

View Article and Find Full Text PDF

Objectives: Despite the success of coronary artery bypass graft (CABG) surgery using autologous saphenous vein grafts (SVGs), nearly 50% of patients experience vein graft disease within 10 years of surgery. One contributing factor to early vein graft disease is endothelial damage during short-term storage of SVGs in inappropriate solutions. Our aim was to evaluate the effects of a novel endothelial damage inhibitor (EDI) on SVGs from patients undergoing elective CABG surgery and on venous endothelial cells (VECs) derived from these SVGs.

View Article and Find Full Text PDF

Heart failure is the leading cause of morbidity and mortality and currently affects more than 60 million people worldwide. A key feature in the pathogenesis of almost all forms of heart failure is cardiac fibrosis, which is characterized by excessive accumulation of extracellular matrix components in the heart. Although cardiac fibrosis is beneficial in the short term after acute myocardial injury to preserve the structural and functional integrity of the heart, persistent cardiac fibrosis contributes to pathological cardiac remodeling, leading to mechanical and electrical dysfunction of the heart.

View Article and Find Full Text PDF

Background And Aims: High epicardial adipose tissue (EAT) attenuation is a key characteristic of adipose tissue dysfunction and associated with coronary artery disease (CAD). As little is known about the modulation of EAT attenuation by metabolic disorders, we investigated the association between EAT attenuation and CAD risk factors, CAD presence and CAD severity in type 2 diabetes mellitus (T2DM) patients.

Methods: We included 276 inpatients with T2DM and 305 control patients with normal glucose metabolism (NGM), who underwent cardiac computed tomography angiography (CCTA) and coronary artery calcium (CAC) scoring.

View Article and Find Full Text PDF

Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence.

View Article and Find Full Text PDF

Cardiovascular (CV) implants are still associated with thrombogenicity due to insufficient hemocompatibility. Endothelialization of their luminal surface is a promising strategy to increase their hemocompatibility. In this review, we provide a collection of research studies and review articles aiming to summarize the recent efforts on surface modifications of CV implants, including stents, grafts, valves, and ventricular assist devises.

View Article and Find Full Text PDF

Formation of claudin-10 based tight junctions (TJs) is paramount to paracellular Na transport in multiple epithelia. Sequence variants in have been linked to HELIX syndrome, a salt-losing tubulopathy with altered handling of divalent cations accompanied by dysfunctional salivary, sweat, and lacrimal glands. Here, we investigate molecular basis and phenotypic consequences of a newly identified homozygous variant that translates into a single amino acid substitution within the fourth transmembrane helix of claudin-10.

View Article and Find Full Text PDF

MicroRNAs play an essential role in cell homeostasis and have been proposed as therapeutic agents. One strategy to deliver microRNAs is to genetically engineer target cells to express microRNAs of interest. However, to control dosage and timing, as well as to limit potential side-effects, microRNAs' expression should ideally be under exogenous, inducible control.

View Article and Find Full Text PDF

Background: Cell-based therapy has long been considered a promising strategy for the treatment of heart failure (HF). However, its effectiveness in the clinical setting is now doubted. Because previous meta-analyses provided conflicting results, we sought to review all available data focusing on cell type and trial design.

View Article and Find Full Text PDF

Domestic pigs are widely used in cardiovascular research as the porcine circulatory system bears a remarkable resemblance to that of humans. In order to reduce variability, only clinically healthy animals enter the study as their health status is assessed in entry examination. Like humans, pigs can also suffer from congenital heart disease, such as an atrial septal defect (ASD), which often remains undetected.

View Article and Find Full Text PDF

Excessive cardiac fibrosis plays a crucial role in almost all types of heart disease. Generally, cardiac fibrosis is a scarring process triggered in response to stress, injury, or aging and is characterized by the accumulation of activated myofibroblasts that deposit high levels of extracellular matrix proteins in the myocardium. While it is beneficial for cardiac repair in the short term, it can also result in pathological remodeling, tissue stiffening, and cardiac dysfunction, contributing to the progression of heart failure, arrhythmia, and sudden cardiac death.

View Article and Find Full Text PDF

Typically, laterally patterned films are fabricated by lithographic techniques, external fields, or di-block copolymer self-assembly. We investigate the self-patterning of polyelectrolyte multilayers, poly(diallyldimethylammonium) (PDADMA)/poly(styrenesulfonate) (PSS). The low PSS molecular weight ((PSS) = 10.

View Article and Find Full Text PDF

Background: Vectors derived from adeno-associated viruses (AAVs) are widely used for gene transfer both in vitro and in vivo and have gained increasing interest as shuttle systems to deliver therapeutic genes to the heart. However, there is little information on their tissue penetration and cytotoxicity, as well as the optimal AAV serotype for transferring genes to diseased hearts. Therefore, we aimed to establish an organotypic heart slice culture system for mouse left ventricular (LV) myocardium and use this platform to analyze gene transfer efficiency, cell tropism, and toxicity of different AAV serotypes.

View Article and Find Full Text PDF

Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between -90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (-90 to -3 mV).

View Article and Find Full Text PDF

The cardioprotective properties of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are currently being investigated in preclinical studies. Although microRNAs (miRNAs) encapsulated in EVs have been identified as one component responsible for the cardioprotective effect of MSCs, their potential off-target effects have not been sufficiently characterized. In the present study, we aimed to investigate the miRNA profile of EVs isolated from MSCs that were derived from cord blood (CB) and adipose tissue (AT).

View Article and Find Full Text PDF

Canine inflammatory bowel disease (IBD) is a chronic, immunologically mediated intestinal disorder, resulting from the complex interaction of genetic, environmental and immune factors. Hydrolyzed diets are used in dogs with food-responsive diarrhea (FRD) to reduce adverse responses to immunostimulatory proteins. Prebiotics (PRBs) and glycosaminoglycans (GAGs) have previously been demonstrated to show anti-inflammatory activity in the intestinal mucosa.

View Article and Find Full Text PDF
Article Synopsis
  • * Extracellular vesicles (EVs) from MSCs, containing microRNAs, play a crucial role in enhancing angiogenesis, especially in cases where the heart lacks sufficient blood supply.
  • * The review emphasizes the importance of understanding the proangiogenic properties of MSCs and their vesicles, aiming to improve strategies for cardiac tissue repair and CVD treatment.
View Article and Find Full Text PDF

Purpose: Autosomal dominant polycystic kidney disease (ADPKD) represents the most common hereditary nephropathy. Despite growing evidence for genetic heterogeneity, ADPKD diagnosis is still primarily based upon clinical imaging criteria established before discovery of additional PKD genes. This study aimed at assessing the diagnostic value of genetic verification in clinical ADPKD.

View Article and Find Full Text PDF

Surface forces are used to investigate the polymer conformation and the surface charge of polyelectrolyte multilayers. Films are prepared from strong polyelectrolytes with low and high linear charge density at 0.1 M NaCl, namely poly(diallyldimethylammonium) (PDADMA) and poly(styrenesulfonate) (PSS).

View Article and Find Full Text PDF

High-quality biological samples are required for the favorable outcome of research studies, and valid data sets are crucial for successful biomarker identification. Prolonged storage of biospecimens may have an artificial effect on compound levels. In order to investigate the potential effects of long-term storage on the metabolome, human ethylenediaminetetraacetic acid (EDTA) plasma samples stored for up to 16 years were analyzed by gas and liquid chromatography-tandem mass spectrometry-based metabolomics.

View Article and Find Full Text PDF