Am J Physiol Cell Physiol
February 2024
Small organic molecules in the intestinal lumen, particularly short-chain fatty acids (SCFAs) and glucose, have long been postulated to enhance calcium absorption. Here, we used Ca radioactive tracer to determine calcium fluxes across the rat intestine after exposure to glucose and SCFAs. Confirming previous reports, glucose was found to increase the apical-to-basolateral calcium flux in the cecum.
View Article and Find Full Text PDFIn the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (HPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme.
View Article and Find Full Text PDFDecagram scale synthesis of favipiravir was performed in 9 steps using diethyl malonate as cheap starting material. Hydrogenation and bromination steps were achieved by employing a continuous flow reactor. The synthetic process provided a total of 16% yield and it is suitable for larger-scale synthesis and production.
View Article and Find Full Text PDFEur J Med Chem
June 2020
A series of flexible diaminodihydrotriazines or cycloguanil (Cyc) analogues are developed and shown to inhibit P. falciparum dihydrofolate reductase (PfDHFR) of the wild type or those carrying either single (S108N), double (C59R + S108N and A16V + S108T), triple (N51I + C59R + S108N and C59R + S108N + I164L) or quadruple (N51I + C59R + S108N + I164L) mutations, responsible for antifolate resistance. The flexibility of the side chain at position N has been included in the design so as to avoid unfavourable steric interaction with the side chain of residue 108 of the resistant mutants.
View Article and Find Full Text PDFNovel analogues of pyrimethamine (Pyr) and cycloguanil (Cyc) have been synthesized and tested as inhibitors of Plasmodium falciparum dihydrofolate reductase carrying triple (N51I+C59R+S108N, C59R+S108N+I164L) and quadruple (N51I+C59R+S108N+I164L) mutations responsible for antifolate resistance. The inhibitors were designed to avoid steric clash of the p-Cl group of the inhibitors with the side chain of Asn108, augmented by additional mutations of the resistant mutants. Cycloguanil derivatives were also designed to avoid steric clash with the side chain of Val16 in the A16V+S108T mutant.
View Article and Find Full Text PDF