Introduction: With increasing age, neuropathological substrates associated with Alzheimer's disease (AD) accumulate in brains of cognitively healthy individuals-are they resilient, or resistant to AD-associated neuropathologies?
Methods: In 85 centenarian brains, we correlated NIA (amyloid) stages, Braak (neurofibrillary tangle) stages, and CERAD (neuritic plaque) scores with cognitive performance close to death as determined by Mini-Mental State Examination (MMSE) scores. We assessed centenarian brains against 2131 brains from AD patients, non-AD demented, and non-demented individuals in an age continuum ranging from 16 to 100+ years.
Results: With age, brains from non-demented individuals reached the NIA and Braak stages observed in AD patients, while CERAD scores remained lower.
Semantic dementia (SD) is a clinical subtype of frontotemporal dementia consistent with the neuropathological diagnosis frontotemporal lobar degeneration (FTLD) TDP type C, with characteristic round TDP-43 protein inclusions in the dentate gyrus. Despite this striking clinicopathological concordance, the pathogenic mechanisms are largely unexplained forestalling the development of targeted therapeutics. To address this, we carried out laser capture microdissection of the dentate gyrus of 15 SD patients and 17 non-demented controls, and assessed relative protein abundance changes by label-free quantitative mass spectrometry.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease linked with the loss of dopaminergic neurons in the brain region called substantia nigra and caused by unknown pathogenic mechanisms. Two currently recognized prominent features of PD are an inflammatory response manifested by glial reaction and T-cell infiltration, as well as the presence of various toxic mediators derived from activated glial cells. PD or parkinsonism has been described after infection with several different viruses and it has therefore been hypothesized that a viral infection might play a role in the pathogenesis of the disease.
View Article and Find Full Text PDFAims: The loss of von Economo neurons (VENs) and GABA receptor subunit theta (GABRQ) containing neurons is linked to early changes in social-emotional cognition and is seen in frontotemporal dementia (FTD) due to C9orf72 repeat expansion. We investigate the vulnerability of VENs and GABRQ-expressing neurons in sporadic and genetic forms of FTD with different underlying molecular pathology and their association with the presence and severity of behavioural symptoms.
Methods: We quantified VENs and GABRQ-immunopositive neurons in the anterior cingulate cortex (ACC) in FTD with underlying TDP43 (FTLD-TDP) (n = 34), tau (FTLD-tau) (n = 24) or FUS (FTLD-FUS) (n = 8) pathology, neurologically healthy controls (n = 12) and Alzheimer's disease (AD) (n = 7).
A clinical syndrome with neuropsychiatric features of bvFTD without neuroimaging abnormalities and a lack of decline is a phenocopy of bvFTD (phFTD). Growing evidence suggests that psychological, psychiatric and environmental factors underlie phFTD. We describe a patient diagnosed with bvFTD prior to the revision of the diagnostic guidelines of FTD.
View Article and Find Full Text PDFWith aging, the incidence of neuropathological hallmarks of neurodegenerative diseases increases in the brains of cognitively healthy individuals. It is currently unclear to what extent these hallmarks associate with symptoms of disease at extreme ages. Forty centenarians from the 100-plus Study cohort donated their brain.
View Article and Find Full Text PDFBackground And Purpose: Genome-wide association studies significantly link intracranial aneurysm (IA) to single-nucleotide polymorphisms (SNPs) in 6 genomic loci. To gain insight into the relevance of these IA-associated SNPs, we aimed to identify regulatory regions and analyze overall gene expression in the human circle of Willis (CoW), on which these aneurysms develop.
Methods: We performed chromatin immunoprecipitation and sequencing for histone modifications H3K4me1 and H3K27ac to identify regulatory regions, including distal enhancers and active promoters, in postmortem specimens of the human CoW.