Publications by authors named "Netaji K Desai"

Sodium dodecyl sulfate (SDS)-capped 1-pyrenecarboxaldehyde nanoparticles (PyalNPs) were prepared using a reprecipitation method in an aqueous medium and exhibited red-shifted aggregation-induced enhanced emission (AIEE). The dynamic light scattering (DLS) examination showed narrower particle size distribution with an average particle size of 41 nm, whereas -34.5 mV zeta potential value indicate the negative surface charge and good stability of nanoparticles (NPs) in an aqueous medium.

View Article and Find Full Text PDF

Fluorescent 3-[(E)-(2-phenylhydrazinylidene) methyl]-1H-indole (PHI) was synthesized by condensation of indole-3-carboxaldehyde and phenyl hydrazine in presence of acetic acid and ethanol and after spectral characterization used further to prepare its aqueous nano suspension by reprecipitation method using polyvinylpyrrolidone (PVP) as stabilizer. The average particle size of nano suspension measured by Dynamic Light Scattering (DLS) was found 77.5 nm while FESEM microphotograph showed spherical morphology.

View Article and Find Full Text PDF

Thin films of p-terphenyl luminophors doped by varying amounts of anthracene were prepared by using spin coating technique. The morphological, structural, and photophysical investigation of thin films of p-terphenyl as a function of anthracene concentration is studied by using scanning electron microscopy (SEM), X-ray diffraction (XRD), fluorescence spectroscopy and fluorescence microscopy. The results of XRD and SEM studies indicated that the doped p-terphenyl thin film is homogeneous as compared with a bare p-terphenyl thin film.

View Article and Find Full Text PDF

The present work reports on the preparation of thin films of pyrene luminophors doped by varying amounts of perylene by spin coating technique. The structural, morphological, and photophysical properties of pyrene thin films have been investigated as a function of perylene contents. X-ray diffraction studies of doped thin films show well-defined peaks, and estimated crystallite size decreases with increasing perylene content, due to the formation of closed packed crystal structure.

View Article and Find Full Text PDF

Nowadays scientist over the world are engaging to put forth improved methods to detect metal ion in an aqueous medium based on fluorescence studies. A simple, selective and sensitive method was proposed for detection of Co ion using fluorescent organic nanoparticles. We synthesized a fluorescent small molecule viz.

View Article and Find Full Text PDF

A simple solid state reaction technique was employed for the preparation of polycrystalline luminophors of p-terphenyl containing different amounts of perylene followed by spectral characterization techniques viz. XRD, SEM, TGA-DSC, UV-Visible spectroscopy, thermo-electrical conductivity, fluorescence spectroscopy, fluorescence life time spectroscopy and temperature dependent fluorescence. X-ray diffraction profiles of the doped p-terphenyl reveal well-defined and sharp peaks indicate homogeneity and crystallinity.

View Article and Find Full Text PDF

Cetyltrimethylammonium bromide (CTAB) capped 9-Anthraldehyde nanoparticles (9-AANPs) in aqueous suspension prepared by reprecipitation method are seen brick shaped in Scanning Electron Microscope image. The Dynamic Light Scattering histogram of nanoparticle suspension reveals narrow particle size distribution and average particle size is 89 nm. The positive zeta potential 20.

View Article and Find Full Text PDF

A fluorimetric method based on fluorescence enhancement effect was developed for the determination of adenosine 5'-monophosphate (AMP) with 9-anthracene carboxylic acid (9-ANCA)-cetyl trimethyl ammonium bromide (CTAB) system. Fluorescence intensity of 9-ANCA was decreased by the addition of CTAB but addition of AMP again rose the intensity of 9-ANCA gradually. The observed fluorescence enhancement is attributed to the competitive binding reaction of 9-ANCA and adenosine to CTAB.

View Article and Find Full Text PDF