Proc Natl Acad Sci U S A
February 2021
An important question is what genes govern the differentiation of plant embryos into suspensor and embryo proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant scarlet runner bean and common bean suspensors.
View Article and Find Full Text PDFGenes encoding regulatory factors isolated from Arabidopsis, soybean and corn have been screened to identify those that modulate the expression of genes encoding for enzymes involved in the biosynthesis of morphinan alkaloids in opium poppy (Papaver somniferum) and benzophenanthridine alkaloids in California poppy (Eschscholzia californica). In opium poppy, the over-expression of selected regulatory factors increased the levels of PsCOR (codeinone reductase), Ps4'OMT (S-adenosyl-l-methionine:3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase) and Ps6OMT [(R,S)-norcoclaurine 6-O-methyltransferase] transcripts by 10- to more than 100-fold. These transcriptional activations translated into an enhancement of alkaloid production in opium poppy of up to at least 10-fold.
View Article and Find Full Text PDFPlants have the potential to produce a wide array of secondary metabolites that have utility as drugs to treat human diseases. To tap this potential, functional human nuclear receptors have been expressed in plants to create in planta screening assays as a tool to discover natural product ligands. Assays have been designed and validated using 3 nuclear receptors: the estrogen receptor (ER), the androgen receptor (AR), and the heterodimeric retinoid X receptor-alpha plus thyroid hormone receptor-beta (RXRA/THRB).
View Article and Find Full Text PDFWe identified a new gene that is interrupted by T-DNA in an Arabidopsis embryo mutant called raspberry3. raspberry3 has "raspberry-like" cellular protuberances with an enlarged suspensor characteristic of other raspberry embryo mutants, and is arrested morphologically at the globular stage of embryo development. The predicted RASPBERRY3 protein has domains found in proteins present in prokaryotes and algae chloroplasts.
View Article and Find Full Text PDF