In this contribution, gravitational effects in gel-forming patchy colloidal systems are studied. We focus on how the gel structure is modified by gravity. Through Monte Carlo computer simulations of gel-like states recently identified by the rigidity percolation criterion [J.
View Article and Find Full Text PDFHypothesis: Particle aggregation is ubiquitous for many colloidal systems, and drives the phase separation or the formation of materials with a highly heterogeneous large-scale structure, such as gels, porous media and attractive glasses. While the macroscopic properties of such materials strongly depend on the shape and size of these particle aggregates, the morphology and underlining aggregation physical mechanisms are far from being fully understood. Recently, it has been proposed that for reversible colloidal aggregation, the cluster morphology in the case of colloids interacting with short-range attractive forces is determined by a single variable, namely, the reduced second virial coefficient, B.
View Article and Find Full Text PDFDuring the past decade, there has been a hot debate about the physical mechanisms that determine when a colloidal dispersion approaches the gel transition. However, there is still no consensus on a possible unique route that leads to the conditions for the formation of a gel-like state. Based on gel states identified in experiments, Valadez-Pérez et al.
View Article and Find Full Text PDFCompeting interaction fluids have become ideal model systems to study a large number of phenomena, for example, the formation of intermediate range order structures, condensed phases not seen in fluids driven by purely attractive or repulsive forces, the onset of particle aggregation under in- and out-of-equilibrium conditions, which results in the birth of reversible and irreversible aggregates or clusters whose topology and morphology depend additionally on the thermodynamic constrictions, and a particle dynamics that has a strong influence on the transport behaviour and rheological properties of the fluid. In this contribution, we study a system of particles interacting through a potential composed by a continuous succession of a short-ranged square-well (SW), an intermediate-ranged square-shoulder and a long-ranged SW. This potential model is chosen to systematically analyse the contribution of every component of the interaction potential on the phase behaviour, the microstructure, the morphology of the resulting aggregates and the transport phenomena of fluids described by competing interactions.
View Article and Find Full Text PDFWe systematically investigated the structure and aggregate morphology of gel networks formed by colloid-polymer mixtures with a moderate colloid volume fraction and different values of the polymer-colloid size ratio, always in the limit of short-range attraction. Using the coordinates obtained from confocal microscopy experiments, we determined the radial, angular, and nearest-neighbor distribution functions together with the cluster radius of gyration as a function of size ratio and polymer concentration. The analysis of the structural correlations reveals that the network structure becomes increasingly less sensitive to the potential strength with the decreasing polymer-colloid size ratio.
View Article and Find Full Text PDFIn this work, a new parameterization for the Statistical Association Fluid Theory for potentials of Variable Range (SAFT-VR) is coupled to the discrete potential theory to represent the thermodynamic properties of several fluids, ranging from molecular liquids to colloidal-like dispersions. In this way, this version of the SAFT-VR approach can be straightforwardly applied to any kind of either simple or complex fluid. In particular, two interaction potentials, namely, the Lennard-Jones and the hard-core attractive Yukawa potentials, are discretized to study the vapor-liquid equilibrium properties of both molecular and complex liquids, respectively.
View Article and Find Full Text PDFWe investigate the ability of a coarse-grained slip-link model and a simple double reptation model to describe the linear rheology of polydisperse linear polymer melts. Our slip-link model is a well-defined mathematical object that can describe the equilibrium dynamics and non-linear rheology of flexible polymer melts with arbitrary polydispersity and architecture with a minimum of inputs: the molecular weight of a Kuhn step, the entanglement activity, and Kuhn step friction. However, this detailed model is computationally expensive, so we also examine predictions of the cheaper double reptation model, which is restricted to only linear rheology near the terminal zone.
View Article and Find Full Text PDFCluster morphology of spherical particles interacting with a short-range attraction has been extensively studied due to its relevance to many applications, such as the large-scale structure in amorphous materials, phase separation, protein aggregation, and organelle formation in cells. Although it was widely accepted that the range of the attraction solely controls the fractal dimension of clusters, recent experimental results challenged this concept by also showing the importance of the strength of attraction. Using Monte Carlo simulations, we conclusively demonstrate that it is possible to reduce the dependence of the cluster morphology to a single variable, namely, the reduced second virial coefficient, B_{2}^{*}, linking the local properties of colloidal systems to the extended law of corresponding states.
View Article and Find Full Text PDFColloidal gels formed by colloid-polymer mixtures with an intermediate volume fraction (ϕ ≈ 0.4) are investigated by confocal microscopy. In addition, we have performed Monte Carlo simulations based on a simple effective pair potential that includes a short-range attractive contribution representing depletion interactions, and a longer-range repulsive contribution describing the electrostatic interactions due to the presence of residual charges.
View Article and Find Full Text PDFThe so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys.
View Article and Find Full Text PDFColloidal liquids interacting with short range attraction and long range repulsion, such as proposed for some protein solutions, have been found to exhibit novel states consisting of equilibrium particle clusters. Monte Carlo simulations are performed for two physically meaningful inter-particle potentials across a broad range of interaction parameters, temperatures and volume fractions to locate the conditions where clustered states are found. A corresponding states phase behavior is identified when normalized by the critical point of an appropriately selected reference attractive fluid.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2013
One major goal in condensed matter is identifying the physical mechanisms that lead to arrested states of matter, especially gels and glasses. The complex nature and microscopic details of each particular system are relevant. However, from both scientific and technological viewpoints, a general, consistent and unified definition is of paramount importance.
View Article and Find Full Text PDFSimple model systems with short-range attractive potentials have turned out to play a crucial role in determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D. Gazzillo [J.
View Article and Find Full Text PDFThe fluid phase behavior of colloidal suspensions with short-range attractive interactions is studied by means of Monte Carlo computer simulations and two theoretical approximations, namely, the discrete perturbation theory and the so-called self-consistent Ornstein-Zernike approximation. The suspensions are modeled as hard-core attractive Yukawa (HCAY) and Asakura-Oosawa (AO) fluids. A detailed comparison of the liquid-vapor phase diagrams obtained through different routes is presented.
View Article and Find Full Text PDF