The involvement of neurotrophic factors in neuronal survival and differentiation is well established. The more recent realization that these factors also play pivotal roles in the maintenance and activity-dependent remodeling of neuronal functioning in the adult brain has generated excitement in the neurosciences. Neurotrophic factors have been implicated in the modulation of synaptic transmission and in the mechanisms underlying learning and memory, mood disorders, and drug addiction.
View Article and Find Full Text PDFAddiction can be viewed as a form of drug-induced neural plasticity. One of the best-established molecular mechanisms of addiction is upregulation of the cAMP second messenger pathway, which occurs in many neuronal cell types in response to chronic administration of opiates or other drugs of abuse. This upregulation and the resulting activation of the transcription factor CREB appear to mediate aspects of tolerance and dependence.
View Article and Find Full Text PDFBackground: Methylphenidate (MPH) is a psychomotor stimulant medication widely used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Given the extent of prescribed use of MPH, and because MPH interacts with the same brain pathways activated by drugs of abuse, most research has focused on assessing MPH's potential to alter an individual's risk for adult drug addiction. Data examining other potential long-term behavioral consequences of early MPH administration are lacking, however.
View Article and Find Full Text PDFBackground: Previous work has shown that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are involved in appetitive behavior. Here we show that BDNF in the ventral tegmental area-nucleus accumbens (VTA-NAc) pathway is also involved in the development of a depression-like phenotype.
Methods: Brain-derived neurotrophic factor signaling in the VTA-NAc pathway was altered in two complementary ways.
Regulators of G protein signaling (RGS) are a family of proteins known to accelerate termination of effector stimulation after G protein receptor activation. RGS9-2, a brain-specific splice variant of the RGS9 gene, is highly enriched in striatum and also expressed at much lower levels in periaqueductal gray and spinal cord, structures known to mediate various actions of morphine and other opiates. Morphine exerts its acute rewarding and analgesic effects by activation of inhibitory guanine nucleotide-binding regulatory protein-coupled opioid receptors, whereas chronic morphine causes addiction, tolerance to its acute analgesic effects, and profound physical dependence by sustained activation of these receptors.
View Article and Find Full Text PDFDeltaFosB (a truncated form of FosB) and CREB (cAMP response element binding protein) are transcription factors induced in the brain's reward pathways after chronic exposure to drugs of abuse. However, their mechanisms of action and the genes they regulate remain unclear. Using microarray analysis in the nucleus accumbens of inducible transgenic mice, we found that CREB and a dominant-negative CREB have opposite effects on gene expression, as do prolonged expression of DeltaFosB and the activator protein-1 (AP-1) antagonist DeltacJun.
View Article and Find Full Text PDFPrevious studies demonstrate that chronic, but not acute electroconvulsive seizures (ECS), increases levels of deltaFosB, a long-lasting transcription factor, in the hippocampus, and this effect correlates with the slow onset and long-lasting clinical effects of antidepressant treatment. To understand how deltaFosB mediates long-term plasticity in the hippocampus, we analyzed the gene expression profile of inducible transgenic mice expressing deltaFosB with a highly sensitive microarray assay and a customized computer analysis program. The CCAAT-enhancing binding protein-beta (C/EBPbeta) was identified as one of the genes downregulated by deltaFosB in the hippocampus.
View Article and Find Full Text PDFNeurotrophic factor signaling pathways modulate cellular and behavioral responses to drugs of abuse. In addition, chronic exposure to morphine increases expression of phospholipase Cgamma1 (PLCgamma1) (a protein involved in neurotrophic signaling) in the ventral tegmental area (VTA), a neural substrate for many drugs of abuse. Using viral-mediated gene transfer to locally alter the activity of PLCgamma1, we show that overexpression of PLCgamma1 in rostral portions of the VTA (R-VTA) results in increased morphine place preference, whereas PLCgamma1 overexpression in the caudal VTA (C-VTA) results in avoidance of morphine-paired compartments.
View Article and Find Full Text PDFRegulators of G protein signaling (RGS) modulate heterotrimeric G proteins in part by serving as GTPase-activating proteins for Galpha subunits. We examined a role for RGS9-2, an RGS subtype highly enriched in striatum, in modulating dopamine D2 receptor function. Viral-mediated overexpression of RGS9-2 in rat nucleus accumbens (ventral striatum) reduced locomotor responses to cocaine (an indirect dopamine agonist) and to D2 but not to D1 receptor agonists.
View Article and Find Full Text PDFThe hypothalamus has been long considered important in feeding and other motivated behaviors. The identification of neuropeptides expressed in the hypothalamus has initiated efforts to better elucidate the underlying molecular mechanisms involved. The neuropeptides orexin and melanin-concentrating hormone (MCH) are expressed in the lateral hypothalamus (LH) and have been implicated in regulation of feeding behavior.
View Article and Find Full Text PDFMorphine stimulates the internalization of mu-opioid receptors (MORs) in transfected cell models to a lesser degree than opioid peptides and other analgesic drugs, such as methadone, and previous studies have reported that morphine does not produce a detectable redistribution of MORs in neural tissue after either acute or chronic administration. Nevertheless, morphine produces profound physiological effects, raising the question of whether receptor trafficking plays any role in the in vivo actions of morphine. We investigated the effects of opiate drugs on recombinant and native opioid receptors in the nucleus accumbens, which plays an important role in mediating the behavioral effects of opiate drugs.
View Article and Find Full Text PDFThe lateral hypothalamus (LH) is implicated in the behavioral actions of drugs of abuse, but the cellular and molecular basis of this role is unclear. Recent identification of neuropeptides localized in LH neurons has allowed for more specific studies of LH function. The LH-specific peptide orexin (hypocretin) has been shown to be important in arousal and sleep regulation.
View Article and Find Full Text PDFAdministration of cocaine induces the Fos family of transcription factors in the striatum, including the nucleus accumbens (NAc), a brain region important for the rewarding effects of addictive drugs. Several Fos proteins are induced acutely by cocaine, with stable isoforms of DeltaFosB predominating after chronic drug administration. However, it has been difficult to study the functional consequences of these Fos responses in vivo.
View Article and Find Full Text PDFThe transcription factor DeltaFosB accumulates in substance P-dynorphin-containing striatal neurons with repeated cocaine use. Here, we show that inducible transgenic DeltaFosB overexpression in this same striatal cell type facilitates acquisition of cocaine self-administration at low-threshold doses, consistent with increased sensitivity to the pharmacological effects of the drug. Importantly, DeltaFosB also enhances the degree of effort mice will exert to maintain self-administration of higher doses on a progressive ratio schedule of reinforcement, whereas levels of cocaine intake are not altered on less demanding fixed-ratio schedules.
View Article and Find Full Text PDFThe present study explored a possible role for RGS (regulators of G protein signalling) proteins in the long term actions of morphine in the locus coeruleus (LC), a brainstem region implicated in opiate physical dependence and withdrawal. Morphine influences LC neurons through activation of micro -opioid receptors, which, being Gi/o-linked, would be expected to be modulated by RGS proteins. We focused on several RGS subtypes that are known to be expressed in this brain region.
View Article and Find Full Text PDFDrugs of abuse cause long-lasting changes in the brain that underlie the behavioral abnormalities associated with drug addiction. Similarly, experience can induce memory formation by causing stable changes in the brain. Over the past decade, the molecular and cellular pathways of drug addiction, on the one hand, and of learning and memory, on the other, have converged.
View Article and Find Full Text PDFPrevious work has demonstrated that acute and chronic administration of amphetamine causes phosphorylation of the transcription factor CREB, the cAMP response element (CRE) binding protein, in striatum, a brain region important for the behavioral actions of the drug. To determine whether such phosphorylation is associated with changes in CREB transcriptional activity, we mapped beta-galactosidase (beta-gal) expression in a CRE-LacZ transgenic mouse, in which the beta-gal reporter is downstream of CRE sequences, following acute or chronic amphetamine administration. We found that acute amphetamine induced beta-gal expression in a relatively small number of brain regions, including nucleus accumbens (ventral striatum), amygdala, ventral tegmental area, and locus coeruleus.
View Article and Find Full Text PDFOne of the current major bottlenecks in drug discovery is in vivo testing of candidate drugs in behavioral paradigms in normal or genetically altered mice. This testing is essential in discovering gene function and predicting potential efficacy of CNS drugs in humans. New efforts in the biotech community aim to alleviate this bottleneck by developing higher-throughput systems of behavioral, neurological and physiological analyses.
View Article and Find Full Text PDFRepeated exposure to cocaine produces an enduring increase in dendritic spine density in adult rat nucleus accumbens. It has been shown previously that chronic cocaine administration increases the expression of cyclin-dependent kinase-5 in this brain region and that this neuronal protein kinase regulates cocaine-induced locomotor activity. Moreover, cyclin-dependent kinase-5 has been implicated in neuronal function and synaptic plasticity.
View Article and Find Full Text PDFThe cAMP response element-binding protein (CREB) is a critical integrator of neural plasticity that is responsive in a brain region-specific manner to a variety of environmental and pharmacological stimuli, including widely prescribed antidepressant medications. We developed inducible transgenic lines of mice that express either CREB or a dominant-negative mutant of CREB (mCREB) in forebrain regions and used these mice to determine the functional significance of this transcription factor in the learned helplessness paradigm, a behavioral model of depression. We also use a complementary viral-mediated gene transfer approach to directly test the effect of mCREB in the nucleus accumbens, a brain region important for motivation and reward.
View Article and Find Full Text PDFTrends Neurosci
December 2002
In laboratory animals, repeated administration of drugs of abuse, such as cocaine, morphine or alcohol, causes sensitization (reverse tolerance) to their stimulant and rewarding effects. Neuroadaptations underlying sensitization could be related to those that contribute to addictive behaviors. An increased understanding of the molecular mechanisms of sensitization could lead to improved treatments for addiction.
View Article and Find Full Text PDFAdenylyl cyclase (AC) type VIII has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. In the present study, we directly examined the role for the transcription factor CREB (cAMP response element binding protein) in regulating ACVIII expression by cloning a 5.2 kilobase region upstream of the translation start site of the mouse ACVIII gene.
View Article and Find Full Text PDFMost advances in addiction treatment to date have addressed the physical dependence and withdrawal that accompany addiction to some drugs of abuse. In contrast, it has proven more difficult to develop medications that effectively treat drug craving and relapse, the core features of addictive disorders. Current efforts focus on developing medications that prevent a drug from getting to its protein target, that mimic drug action and thereby partially alleviate drug craving, or that affect the addiction process per se.
View Article and Find Full Text PDF