Publications by authors named "Nesterenko N"

The utilization of methane for chemical production, often considered as the future of petrochemistry, historically could not compete economically with conventional processes due to higher investment costs. Achieving sustainability and decarbonization of the downstream industry by integration with a methane-to-chemicals process may provide an opportunity to unlock the future for these technologies. Gas-to-chemicals is an efficient tool to boost the decarbonization potential of renewable energy.

View Article and Find Full Text PDF

The precise location and role of all types of hydroxyls in zeolites are still enigmatic, and their control permits tailoring of novel properties increasing the efficiency of catalysts and adsorbents in industrial processes for cleaner energy.

View Article and Find Full Text PDF

The complex of climatic and geographical conditions of the Arctic determines the high intensity of the polysystem adaptive response of the organism, the duration of which is additionally influenced by individual genetic characteristics, social conditions, psychological and work loads. Taking into account the relevance of timely prevention and early diagnosis of stress-induced somatic pathology in EMERCOM employees working in unfavorable climatic and geographical zones, the authors evaluated the informative value of determining the level of steroid hormones and insulin as laboratory markers of adaptation to Arctic conditions. The expediency of developing objective criteria for the interpretation of the insulin/cortisol index and studying the informativeness of the 17ONprogesterone level as the earliest marker of adaptation to unfavorable climatic and geographical conditions of the Arctic is substantiated.

View Article and Find Full Text PDF

The preparation of defect-free MFI crystals containing single-site framework Mo through a hydrothermal postsynthesis treatment is reported. The insertion of single Mo sites in the MFI zeolite samples with different crystal sizes of 100, 200, and 2000 nm presenting a diverse concentration of silanol groups is revealed. The nature of the silanols and their role in the incorporation of Mo into the zeolite structure are elucidated through an extensive spectroscopic characterization (Si NMR, H NMR, P NMR, and IR) combined with X-ray diffraction and HRTEM.

View Article and Find Full Text PDF

Zeolite Y and its ultra-stabilized hierarchical derivative (USY) are the most widely used zeolite-based heterogeneous catalysts in oil refining, petrochemisty, and other chemicals manufacturing. After almost 60 years of academic and industrial research, their resilience is unique as no other catalyst displaced them from key processes such as FCC and hydrocracking. The present study highlights the key difference leading to the exceptional catalytic performance of USY versus the parent zeolite Y in a multi-technique study combining advanced spectroscopies (IR and solid-state NMR) and molecular modeling.

View Article and Find Full Text PDF

Zeolites have been game-changing materials in oil refining and petrochemistry over the last 60 years and have the potential to play the same role in the emerging processes of the energy and environmental transition. Although zeolites are crystalline inorganic solids, their structures are not perfect and the presence of defect sites - mainly Brønsted acid sites and silanols - influences their thermal and chemical resistance as well as their performances in key areas such as catalysis, gas and liquid separations and ion-exchange. In this paper, we review the type of defects in zeolites and the characterization techniques used for their identification and quantification with the focus on diffraction, spectroscopic and modeling approaches.

View Article and Find Full Text PDF

Small-pore zeolites such as chabazite (CHA) are excellent candidates for the selective separation of CO ; however, the current synthesis involves several steps and the use of organic structure-directing agent (OSDA), increasing their cost and energy requirements. We report the synthesis of small-pore zeolite crystals (aluminosilicate) with CHA-type framework structure by direct synthesis in a colloidal suspension containing a mixture of inorganic cations only (Na , K , and Cs ). The location of CO molecules in the host structure was revealed by 3D electron diffraction (3D ED).

View Article and Find Full Text PDF

The development of catalysts that can operate under exceptionally harsh and unconventional conditions is of critical importance for the transition of the energy and chemicals industries to low-emission and renewable chemical feedstocks. In this review we will highlight materials and more specifically metal-containing zeolite catalysts that have been tested under harsh reaction conditions such as high temperature light alkane conversion and biomass valorization. Particular attention will be given to studies that explore the stability and recyclability of metal-containing zeolite catalysts operating in continuous modes.

View Article and Find Full Text PDF

The current energy transition presents many technological challenges, such as the development of highly stable catalysts. Herein, we report a novel "top-down" synthesis approach for preparation of a single-site Mo-containing nanosized ZSM-5 zeolite which has atomically dispersed framework-molybdenum homogenously distributed through the zeolite crystals. The introduction of Mo heals most of the native point defects in the zeolite structure resulting in an extremely stable material.

View Article and Find Full Text PDF

Ni contamination from crude oil in the fluid catalytic cracking (FCC) process is one of the primary sources of catalyst deactivation, thereby promoting dehydrogenation-hydrogenation and speeding up coke growth. Herein, single-particle X-ray fluorescence, diffraction and absorption (μXRF-μXRD-μXAS) tomography is used in combination with confocal fluorescence microscopy (CFM) after thiophene staining to spatially resolve Ni interaction with catalyst components and study zeolite degradation, including the processes of dealumination and Brønsted acid sites distribution changes. The comparison between a Ni-lean particle, exposed to hydrotreated feedstock, and a Ni-rich one, exposed to non-hydrotreated feedstock, reveals a preferential interaction of Ni, found in co-localization with Fe, with the γ-Al O matrix, leading to the formation of spinel-type hotspots.

View Article and Find Full Text PDF

Direct evidence of the successful incorporation of atomically dispersed molybdenum (Mo) atoms into the framework of nanosized MFI zeolite is demonstrated for the first time. Homogeneous distribution of Mo with a size of 0.05 nm is observed by scanning transmission electron microscopy high-angle annular dark-field imaging (STEM-HAADF).

View Article and Find Full Text PDF

The activating effect of a M-receptor agonist carbachol on phosphatidylinositol metabolism under perfusion of the isolated rabbit heart with 32Pi was shown. An increase of the inclusion of 32P in phosphatidylinositol-4-phosphate and phosphatidylinositol-4-diphosphate was found. Simultaneously there was detected an elevation of the levels of products of hydrolysis of inositol phospholipids--inositol-1,4-diphosphate and inositol-1,4,5-triphosphate.

View Article and Find Full Text PDF

Phosphorylation of cardiac sarcolemma proteins under stimulation of M-receptors by agonist carbacholine used to stimulate phosphatidylinositide cycle, was investigated in the isolated, rabbit heart perfused with 32Pi. Carbacholine (10(-7) stimulates the polyphosphoinositide metabolism which is expressed in the activated incorporation of 32P from [gamma-32P]ATP in polyphosphoinositide as well as in the increased content of the labelled inositol trisphosphate released through phosphatidylinositol-4,5-bisphosphate break-down by phospholipase C. The diacylglycerol produced simultaneously with inositol triphosphate as a second messenger activates the protein kinase C.

View Article and Find Full Text PDF

The results of planned population surveys for opisthorchiasis performed by teams of epidemiologists in 11 districts of Chernigov Province have been reviewed. 130,067 individuals in 156 communities have been examined. All the communities were situated not more than 5 km from the main water artery of the area--the Desna River and its main tributaries--the Seim, the Ubed', the Doch', the Borzna.

View Article and Find Full Text PDF

A Ca2+-phospholipid-dependent protein kinase C was isolated from the soluble fraction of bovine brain, using hydrophobic chromatography on phenyl-Sepharose CL-4B and high performance liquid chromatography on a Mono Q column. The enzyme had a specific activity of 822 nmol 32P/mg protein/min with histone H1 as a substrate. Phosphorylation of pig myocardium sarcolemma protein substrates was stimulated by Ca2+ and phosphatidylserine; the optimal concentrations of these compounds were 10(-4) M and 200 micrograms/ml, respectively.

View Article and Find Full Text PDF

Highly purified pig myocardium sarcolemma vesicles possess the Ca2+,Mg2+-ATPase activity (4.1 mumol Pi/mg protein/hour) and induce the ATP-dependent accumulation of 45Ca2+ (6.0 nmol/mg protein/min).

View Article and Find Full Text PDF

The fatty-acid composition of lipids was studied in the muscular tissue and internal organs of whitefish living in Siberian rivers, that had been moved to lakes where it had not lived before. Changes in the lipid composition were recorded in mature fish moved into the lakes and in this year's brood. It was found that lipids of mature fish were resistant to oxidizing damage.

View Article and Find Full Text PDF

The effect of membrane potential on the passive 45Ca2+ uptake by cardial sarcolemmal vesicles was investigated. Membrane potentials were generated by the K+ gradient in the presence of valinomycin and were measured using fluorescent dye diS-C3-(5). It was shown that the 45Ca2+ influx into vesicles increased twice after membrane depolarization.

View Article and Find Full Text PDF