Publications by authors named "Nessa O'Connor"

The effects of climate change on coastal biodiversity are a major concern because altered community compositions may change associated rates of ecosystem functioning and services. Whilst responses of single species or taxa have been studied extensively, it remains challenging to estimate responses to climate change across different levels of biological organisation. Studies that consider the effects of moderate realistic near-future levels of ocean warming and acidification are needed to identify and quantify the gradual responses of species to change.

View Article and Find Full Text PDF

As primary producers and ecosystem engineers, kelp (generally Order Laminariales) are ecologically important, and their decline could have far-reaching consequences. Kelp are valuable in forming habitats for fish and invertebrates and are crucial for adaptation to climate change by creating coastal defenses and in providing key functions, such as carbon sequestration and food provision. Kelp are threatened by multiple stressors, such as climate change, over-harvesting of predators, and pollution.

View Article and Find Full Text PDF
Article Synopsis
  • Coastal habitats, particularly intertidal kelp species like oarweed and sugar kelp, play a crucial role in the global carbon cycle, but their carbon flow rates are not well understood across many regions.
  • A study over 22 months on NE Atlantic rocky shores found that oarweed density was higher in exposed areas, while sugar kelp showed low density overall; both species demonstrated peak productivity and detrital production in May, influenced by temperature and light.
  • The research suggests that these kelp habitats significantly contribute to coastal carbon cycles and urges for better assessments of their extent and productivity to improve ecosystem models.
View Article and Find Full Text PDF

Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions.

View Article and Find Full Text PDF

The role of marine primary producers in capturing atmospheric CO has received increased attention in the global mission to mitigate climate change. Yet, our understanding of carbon sequestration performed by macroalgae has been limited to a relatively small number of studies that have estimated the ultimate fate of macroalgal-derived carbon. This systematic review was conducted to provide a timely synthesis of the methods used to determine the fate of macroalgal carbon in this rapidly expanding research area.

View Article and Find Full Text PDF

While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass () spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude.

View Article and Find Full Text PDF

Data that can be used to monitor biodiversity through time are essential for conservation and management. The reef-forming worm, Sabellaria alveolata (L. 1767) is currently classed as 'Data Deficient' due to an imbalance in the spread of data on its distribution.

View Article and Find Full Text PDF

Recent warming trends have driven widespread changes in the performance and distribution of species in many regions, with consequent shifts in assemblage structure and ecosystem functioning. However, as responses to warming vary across species and regions, novel communities are emerging, particularly where warm-affinity range-expanding species have rapidly colonized communities still dominated by cold-affinity species. Such community reconfiguration may alter core ecosystem processes, such as productivity or nutrient cycling, yet it remains unclear whether novel communities function similarly to those they have replaced, and how continued warming will alter functioning in the near future.

View Article and Find Full Text PDF

Human activities degrade and fragment coastal marine habitats, reducing their structural complexity and making habitat edges a prevalent seascape feature. Though habitat edges frequently are implicated in reduced faunal survival and biodiversity, results of experiments on edge effects have been inconsistent, calling for a mechanistic approach to the study of edges that explicitly includes indirect and interactive effects of habitat alteration at multiple scales across biogeographic gradients. We used an experimental network spanning 17 eelgrass (Zostera marina) sites across the Atlantic and Pacific oceans and the Mediterranean Sea to determine (1) if eelgrass edges consistently increase faunal predation risk, (2) whether edge effects on predation risk are altered by habitat degradation (shoot thinning), and (3) whether variation in the strength of edge effects among sites can be explained by biogeographical variability in covarying eelgrass habitat features.

View Article and Find Full Text PDF

The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats.

View Article and Find Full Text PDF

Exploration of the relationship between species diversity and ecological stability has occupied a prominent place in ecological research for decades. Yet, a key component of this puzzle-the contributions of individual species to the overall stability of ecosystems-remains largely unknown. Here, we show that individual species simultaneously stabilize and destabilize ecosystems along different dimensions of stability, and also that their contributions to functional (biomass) and compositional stability are largely independent.

View Article and Find Full Text PDF
Article Synopsis
  • The introduction of the Pacific oyster, Magallana gigas, has sparked concerns about its effects on local ecosystems, especially as native European oyster populations are declining.
  • A study compared the nutrient cycling and biodiversity contributions of the native oyster, Ostrea edulis, with the invasive M. gigas, looking at various environmental factors and mussel densities.
  • Results showed no significant differences in nutrient cycling or associated species between the two, suggesting that M. gigas could take over the ecological roles of the native oyster in areas where it has disappeared.
View Article and Find Full Text PDF

Spatially complex habitats provide refuge for prey and mediate many predator-prey interactions. Increasing anthropogenic pressures are eroding such habitats, reducing their complexity and potentially altering ecosystem stability on a global scale. Yet, we have only a rudimentary understanding of how structurally complex habitats create ecological refuges for most ecosystems.

View Article and Find Full Text PDF

The cultivation of macroalgae for biofuels, food and fertilisers has increased dramatically in recent years. The demand for such algal-derived products means that large scale cultivation in coastal waters will become necessary to provide sufficient algal biomass. As part of the process of establishing new macroalgal farms, the potential for gene flow between cultivated specimens and natural populations needs to be taken into consideration.

View Article and Find Full Text PDF

Warming, nutrient enrichment and biodiversity modification are among the most pervasive components of human-induced global environmental change. We know little about their cumulative effects on ecosystems; however, even though this knowledge is fundamental to predicting and managing their consequences in a changing world. Here, we show that shifts in predator species composition can moderate both the individual and combined effects of warming and nutrient enrichment in marine systems.

View Article and Find Full Text PDF

Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines.

View Article and Find Full Text PDF

Ecological networks are tightly interconnected, such that loss of a single species can trigger additional species extinctions. Theory predicts that such secondary extinctions are driven primarily by loss of species from intermediate or basal trophic levels. In contrast, most cases of secondary extinctions from natural systems have been attributed to loss of entire top trophic levels.

View Article and Find Full Text PDF

Biological effects of microplastics on the health of bivalves have been demonstrated elsewhere, but ecological impacts on the biodiversity and ecosystem functioning of bivalve-dominated habitats are unknown. Thus, we exposed intact sediment cores containing European flat oysters (Ostrea edulis) or blue mussels (Mytilus edulis) in seawater to two different densities (2.5 or 25 μg L) of biodegradable or conventional microplastics in outdoor mesocosms.

View Article and Find Full Text PDF

Human actions challenge nature in many ways. Ecological responses are ineluctably complex, demanding measures that describe them succinctly. Collectively, these measures encapsulate the overall 'stability' of the system.

View Article and Find Full Text PDF

Invasive species can impact native species and alter assemblage structure, which affects associated ecosystem functioning. The pervasive Pacific oyster, Crassostrea gigas, has been shown to affect the diversity and composition of many host ecosystems. We tested for effects of the presence of the invasive C.

View Article and Find Full Text PDF

Background: Theoretically, each species' ecological niche is phylogenetically-determined and expressed spatially as the species' range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources.

View Article and Find Full Text PDF

To understand the consequences of biodiversity loss, it is necessary to test how biodiversity-ecosystem functioning relationships may vary with predicted environmental change. In particular, our understanding will be advanced by studies addressing the interactive effects of multiple stressors on the role of biodiversity across trophic levels. Predicted increases in wave disturbance and ocean warming, together with climate-driven range shifts of key consumer species, are likely to have profound impacts on the dynamics of coastal marine communities.

View Article and Find Full Text PDF

Similar environmental driving forces can produce similarity among geographically distant ecosystems. Coastal oceanic upwelling, for example, has been associated with elevated biomass and abundance patterns of certain functional groups, e.g.

View Article and Find Full Text PDF

Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude.

View Article and Find Full Text PDF

Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning.

View Article and Find Full Text PDF