Purpose: We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones.
Approach: The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units.
IEEE Trans Med Imaging
April 2019
In this paper, we propose a novel deep learning framework for anatomy segmentation and automatic landmarking. Specifically, we focus on the challenging problem of mandible segmentation from cone-beam computed tomography (CBCT) scans and identification of 9 anatomical landmarks of the mandible on the geodesic space. The overall approach employs three inter-related steps.
View Article and Find Full Text PDFDeep learning has demonstrated tremendous revolutionary changes in the computing industry and its effects in radiology and imaging sciences have begun to dramatically change screening paradigms. Specifically, these advances have influenced the development of computer-aided detection and diagnosis (CAD) systems. These technologies have long been thought of as "second-opinion" tools for radiologists and clinicians.
View Article and Find Full Text PDFBackground: Polychromatic flow cytometry is a popular technique that has wide usage in the medical sciences, especially for studying phenotypic properties of cells. The high-dimensionality of data generated by flow cytometry usually makes it difficult to visualize. The naive solution of simply plotting two-dimensional graphs for every combination of observables becomes impractical as the number of dimensions increases.
View Article and Find Full Text PDF