Human immunodeficiency virus (HIV) Gag protein targets to the plasma membrane and assembles into viral particles. In the next round of infection, the mature Gag capsids disassemble during viral entry. Thus, Gag plays a central role in the HIV life cycle.
View Article and Find Full Text PDFThe problem of three-dimensional organization of retroviral cores has been a matter of interest for the past 30 years. The general opinion in favor of icosahedral symmetry based on electron microscopy observations was questioned when cryo-electron microscopy failed to provide convincing evidence in its favor. More recent studies by cryo-electron microscopy, X-ray crystallography and in vitro assembly of the CA domain of Human immuno deficiency virus (HIV), Murine leukemia virus (MuLV) and Rous sarcoma virus (RSV) threw new light on the organization of retroviral cores.
View Article and Find Full Text PDFIn contrast to other retroviruses, Mason-Pfizer monkey virus (M-PMV) assembles immature capsids in the cytoplasm. We have compared the ability of minimal assembly-competent domains from M-PMV and human immunodeficiency virus type 1 (HIV-1) to assemble in vitro into virus-like particles in the presence and absence of nucleic acids. A fusion protein comprised of the capsid and nucleocapsid domains of Gag (CANC) and its N-terminally modified mutant (DeltaProCANC) were used to mimic the assembly of the viral core and immature particles, respectively.
View Article and Find Full Text PDFExpression of the murine leukaemia virus (MLV) major Gag antigen p65(Gag) using the baculovirus expression system leads to efficient assembly and release of virus-like particles (VLP) representative of immature MLV. Expression of p180(Gag-Pol), facilitated normally in mammalian cells by readthrough of the p65(Gag) termination codon, also occurs efficiently in insect cells to provide a source of the MLV protease and a pattern of p65(Gag) processing similar to that observed in mammalian cells. VLP release from p180(Gag-Pol)-expressing cells however remains essentially immature with disproportionate levels of the uncleaved p65(Gag) precursor when compared to the intracellular Gag profile.
View Article and Find Full Text PDFRetroviruses copy their RNA genome into a DNA molecule, but little is known of the structure of the complex mediating reverse transcription in vivo. We used confocal and electron microscopy to study the structure of human immunodeficiency virus type 1 (HIV-1) intracellular reverse transcription complexes (RTCs). Cytoplasmic extracts were prepared 3, 4, and 16 h after acute infection by Dounce homogenization in hypotonic buffer.
View Article and Find Full Text PDFExpression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation.
View Article and Find Full Text PDFRecent biochemical studies have identified high molecular complexes of the HIV Gag precursor in the cytosol of infected cells. Using immunoelectron microscopy we studied the time course of the synthesis and assembly of a HIV Gag precursor protein (pr55gag) in Sf9 cells infected with recombinant baculovirus expressing the HIV gag gene. We also immunolabeled for pr55gag human T4 cells acutely or chronically infected with HIV-1.
View Article and Find Full Text PDFWe describe the results of a study by electron microscopy and image processing of Gag protein shells-immature capsids--of Mason-Pfizer monkey virus assembled in Escherichia coli from two truncated forms of the Gag precursor: Deltap4Gag, in which the C-terminal p4Gag was deleted, and Pro(-)CA.NC, in which the N-terminal peptides and proline 1 of the CA domain were deleted. Negative staining of capsids revealed small patches of holes forming a trigonal or hexagonal pattern most clearly visible on occasional tubular forms.
View Article and Find Full Text PDFMason-Pfizer monkey virus (M-PMV) preassembles immature capsids in the cytoplasm prior to transporting them to the plasma membrane. Expression of the M-PMV Gag precursor in bacteria results in the assembly of capsids indistinguishable from those assembled in mammalian cells. We have used this system to investigate the structural requirements for the assembly of Gag precursors into procapsids.
View Article and Find Full Text PDFThe matrix protein p17gag (MA) is a product of proteolytic cleavage of the gag gene encoded polyprotein (pr55gag) and is formed when HIV particles undergo the process of maturation. The MA protein is associated with the inner surface of the viral membrane and determines the overall shape of the virion. Previous studies have shown the existence of trimers of MA in solution and in the crystalline state.
View Article and Find Full Text PDFA key stage in the life cycle of C-type retroviruses is the assembly of Gag precursor protein at the plasma membrane of infected cells. Here we report the assembly of bovine leukemia virus (BLV) gag gene product into virus-like particles (VLPs) using the baculovirus expression system. Expression of BLV Pr44(Gag) resulted in the assembly and release of VLPs, thereby confirming the ability of retroviral Gag polyprotein to assemble and bud from insect cells.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 Gag protein is cotranslationally myristoylated at the N terminus and targeted to the plasma membrane, where virus particle assembly occurs. Particle assembly requires the ordered multimerization of Gag proteins, yet there is little direct evidence of intermediates of the reaction or of the domains that lead to each stage of the oligomerization process. In this study, following the expression in insect cells of C-terminally truncated Gag proteins and their purification, both the multimeric nature of each Gag protein and the ability to form Gag virus-like particles (VLP) were analyzed.
View Article and Find Full Text PDFImmunoelectron microscopy was used to detect actin in wild-type (wt) Moloney murine leukemia virus (MoMuLV) and in virus-like particles (VLP) produced by recombinant Semliki Forest virus expressing only the MoMuLV gag polyprotein. Gold immunolabeling revealed the presence of actin on the surface of delipidized VLP and delipidized wt virus particles. Statistical evaluation of the number of colloidal gold particles per VLP revealed a large range of values and a prevalence of VLP with small numbers of gold particles.
View Article and Find Full Text PDFThe fullerene-like model for the organization of HIV gag encoded precursor pr55gag was based on the study of prebudding assemblies at the plasma membrane of cells infected with a recombinant baculovirus expressing HIV-1 gag protein. The objective of the present study was to support the model by image processing of virus-like particles (VLP). In this work we used VLP purified by density gradient centrifugation, which caused partial or occasionally complete loss of the lipid bilayer in some VLP without the use of detergent.
View Article and Find Full Text PDFPrevious studies have shown that single amino acid changes in the amino-terminal matrix (MA) domain, p17, of the human immunodeficiency virus type 1 Gag precursor Pr55, can abrogate virion particle assembly. In the three-dimensional structure of MA such mutations lie in a single helix spanning residues 54 to 68, suggesting a key role for this helix in the assembly process. The fundamental nature of this involvement, however, remains poorly understood.
View Article and Find Full Text PDFSubunits of the two types of keyhole limpet hemocyanin (KLH1 and KLH2), purified by gel filtration chromatography and preparative polyacrylamide gel electrophoresis from Immucothel, have been used for macromolecular reassociation studies. In-vitro reassociation has been achieved with a standardized system using a Tris-saline stabilizing buffer at pH 7.4 containing 100 mM calcium and magnesium chloride at 4 degrees C.
View Article and Find Full Text PDFJ Gen Virol
November 1996
The results of biochemical and immunoelectron microscopic studies provide evidence that the NB protein is an integral component of the influenza B virion. Its glycosylation and orientation in the membrane were shown to be equivalent to that of NB in the plasma membrane of virus-infected cells. Sensitivity to proteinase K showed that the N terminus is exterior to the virion and gold immunolabelling of freeze-fractured replicas showed that the C terminus is located in the interior of the virion.
View Article and Find Full Text PDFSeven internal deletions within the p24 domain of the human immunodeficiency virus type 1 Gag precursor have been assessed for their effect on Gag particle formation following their expression using recombinant baculoviruses. In addition, each deleted molecule was assessed for its ability to bind soluble p24 antigen in vitro. The mutants fell into three different phenotypic groups: (i) three mutants that had no effect on either p24 binding or Gag particle assembly, (ii) three mutants that abolished both features and (iii) one mutant that bound p24 in vitro but failed to assemble particles.
View Article and Find Full Text PDFCurr Top Microbiol Immunol
December 1996
We report single-point mutations that are located in the matrix protein domain of the gag gene of human immunodeficiency virus type 1 and that prevent Gag particle formation. We show that mutations of p17 that abolish human immunodeficiency virus particle assembly also prevent the dimerization of p17 protein, as measured directly by a protein-protein binding assay. In the three-dimensional structure of p17, mutations that abolish dimerization are located in a single alpha helix that forms part of a fingerlike projection from one side of the molecule.
View Article and Find Full Text PDFSix mutants that differ in the extent of their carboxyterminal sequences and two deletion mutants of the gag gene of HIV-1 have been characterized morphologically following their expression in Spodoptera frugiperda cells using recombinant baculoviruses. Electron microscopy has revealed distinct morphological forms of the Gag protein that can be classified as either (i) particulate, three-dimensional, spherical or tubular shells or (ii) non-particulate, two-dimensional, flat, curved or convoluted sheets. Progressive truncation of the carboxy terminus of Gag was accompanied by changes in the morphology and formation of spherical particles from predominantly C-type assembly and budding at the plasma membrane, through B-type intracytoplasmic assembly, to A-type assembly with budding mainly into cytoplasmic vacuoles.
View Article and Find Full Text PDFAmino acid changes in the CA domain of the p55 Gag protein of HIV-1 have been observed during the course of an infection that appear to correlate with escape from cytotoxic T cell surveillance (Phillips et al., Nature 354, 453-459, 1991). A corollary of this observation is that all such changes should be functionally silent but, as the changes were observed in populations of virus, this has not been formally demonstrated.
View Article and Find Full Text PDFThe human immunodeficiency virus gag precursor protein Pr55Gag exhibits the ability of particle assembly when expressed using recombinant baculoviruses. In order to delineate the sequences required for particle formation, two mutants of Gag (D1 and D2) were constructed in which 10 amino acids within the CA domain were deleted. Both mutants yielded stable high levels of Gag antigen following expression in Spodoptera frugiperda insect cells.
View Article and Find Full Text PDFVirus-like particles produced by a recombinant baculovirus containing the HIV gag gene were examined by negative staining after delipidization. This technique demonstrated that the gag-protein shell consisted of radially arranged short rods which formed a network of ring-like structures. Similar structures were observed at the plasma membrane of infected cells which had been opened by wet-cleaving.
View Article and Find Full Text PDFRapid freezing, freeze substitution and low temperature embedding were used to obtain resin-embedded specimens of HIV and SIV for morphological and immunolabelling studies, with particular emphasis on the 'lateral bodies' and p6 protein. HIV- or SIV-infected cells were fixed in 3% paraformaldehyde and cryoprotected with 0.5 M sucrose.
View Article and Find Full Text PDF