Publications by authors named "Nermina Lamadema"

The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate.

View Article and Find Full Text PDF

A novel series of potent chiral inhibitors of histone deacetylase (HDAC) is described that contains an oxazoline capping group and a N-(2-aminophenyl)-benzamide unit. Among several new inhibitors of this type exhibiting Class I selectivity and potent inhibition of HDAC3-NCoR2, in vitro assays for the inhibition of HDAC1, HDAC2, and HDAC3-NCoR2 by N-(2-aminophenyl)-benzamide 15k gave respective IC50 values of 80, 110, and 6 nM. Weak inhibition of all other HDAC isoforms (HDAC4, 5, 6, 7, and 9: IC50 > 100 000 nM; HDAC8: IC50 = 25 000 nM; HDAC10: IC50 > 4000 nM; HDAC11: IC50 > 2000 nM) confirmed the Class I selectivity of 15k.

View Article and Find Full Text PDF

The synthesis of a novel series of potent chiral inhibitors of histone deacetylase (HDAC) is described that contain a heterocyclic capping group and a N-(2-aminophenyl)benzamide unit that binds in the active site. In vitro assays for the inhibition of HDAC1, HDAC2, HDAC3-NCoR1, and HDAC8 by the N-(2-aminophenyl)benzamide 24a gave respective IC50 values of 930, 85, 12, and 4100 nM, exhibiting class I selectivity and potent inhibition of HDAC3-NCoR1. Both imidazolinone and thiazoline rings are shown to be effective replacements for the pyrimidine ring present in many other 2-(aminophenyl)benzamides previously reported, an example of each ring system at 1 μM causing an increase in histone H3K9 acetylation in the human cell lines Jurkat and HeLa and an increase in cell death consistent with induction of apoptosis.

View Article and Find Full Text PDF