Publications by authors named "Nerissa Viola"

Mild hyperthermia (MHTh) is often used in combination with chemotherapy and radiotherapy for cancer treatment. In the current study, the effect of MHTh on the enhanced uptake of the FDA-approved chemotherapy drug, liposomal doxorubicin (dox) in syngeneic 4T1 tumors was investigated. Doxorubicin has inherent fluorescence properties having an emission signal at 590 nm upon excitation with a 480 nm laser.

View Article and Find Full Text PDF

Introduction: We previously developed a Zr-labeled antibody-based immuno-positron emission tomography (immunoPET) tracer targeting interferon gamma (IFNγ), a cytokine produced predominantly by activated T and natural killer (NK) cells during pathogen clearance, anti-tumor immunity, and various inflammatory and autoimmune conditions. The current study investigated [Zr]Zr-DFO-anti-IFNγ PET as a method to monitor response to immune checkpoint inhibitors (ICIs).

Methods: BALB/c mice bearing CT26 colorectal tumors were treated with combined ICI (anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death 1 (PD-1)).

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD), which encompasses ulcerative colitis and Crohn disease, is a chronic inflammatory disorder resulting from an aberrant immune response, though its exact cause is unknown. The current mainstay standard of care for the diagnosis and surveillance of IBD is endoscopy. However, this methodology is invasive and images only superficial tissue structures, revealing very little about the molecular drivers of inflammation.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD), which includes both Crohn disease and ulcerative colitis, is a relapsing inflammatory disease of the gastrointestinal tract. Long-term chronic inflammatory conditions elevate the patient's risk of colorectal cancer (CRC). Currently, diagnosis requires endoscopy with biopsy.

View Article and Find Full Text PDF

TRA-1-60 (TRA) is an established transcription factor of embryonic signaling and a well-known marker of pluripotency. It has been implicated in tumorigenesis and metastases, is not expressed in differentiated cells, which makes it an appealing biomarker for immunopositron emission tomography (immunoPET) imaging and radiopharmaceutical therapy (RPT). Herein, we explored the clinical implications of TRA in prostate cancer (PCa), examined the potential of TRA-targeted PET to specifically image TRA cancer stem cells (CSCs) and assessed response to the selective ablation of PCa CSCs using TRA-targeted RPT.

View Article and Find Full Text PDF

The radiotracer 1-(2-[ F]fluoroethyl)-L-tryptophan (L-[ F]FETrp or [ F]FETrp) is a substrate of indoleamine 2,3-dioxygenase, the initial and key enzyme of the kynurenine pathway associated with tumoral immune resistance. In preclinical positron emission tomography studies, [ F]FETrp is highly accumulated in a wide range of primary and metastatic cancers, such as lung cancer, prostate cancer, and gliomas. However, the clinical translation of this radiotracer into the first-in-human trial has not been reported, partially due to its racemization during radiofluorination which renders the purification of the final product challenging.

View Article and Find Full Text PDF

HER2-targeted therapy has improved breast cancer survival, but treatment resistance and disease prevention remain major challenges. Genes that enable HER2/Neu oncogenesis are the next intervention targets. A bioinformatics discovery platform of HER2/Neu-expressing Diversity Outbred (DO) F1 Mice was established to identify cancer-enabling genes.

View Article and Find Full Text PDF

The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo.

View Article and Find Full Text PDF

Repeated cocaine alters neuronal function in the nucleus accumbens (NAc), a brain region involved in cocaine taking, and in hippocampus (HC), known for contextual and associative learning. [F]TFAHA is a histone deacetylase (HDAC) class IIa-specific radiotracer for positron emission tomography (PET)-imaging developed by our group to study epigenetic mechanisms. Here, [F]TFAHA was used to conduct PET-imaging coupled with computed tomography (CT) of rat brains at baseline and after repeated cocaine intravenous self-administration (cocaine-IVSA) in low-intake versus high-intake cocaine groups.

View Article and Find Full Text PDF

Introduction: Interferon-γ (IFN-γ) is an appealing target to evaluate immune response in cancer immunotherapy as it is a hallmark of an active immune system. Imaging and detection via immunopositron emission tomography (immunoPET) of this soluble cytokine has been made feasible using a Zr-labeled (t ~ 3.27 d) monoclonal antibody (mAb).

View Article and Find Full Text PDF

The immune cytokine interleukin-12 (IL-12) is involved in cancer initiation and progression, autoimmunity, as well as graft versus host disease. The ability to monitor IL-12 imaging may provide insight into various immune processes, including levels of antitumor immunity, inflammation, and infection due to its functions in immune signaling. Here, we report the development and preclinical evaluation of an antibody-based IL-12-specific positron emission tomography (PET) tracer.

View Article and Find Full Text PDF

In oncology, biomarker research aimed to provide insights on cancer biology via positron emission tomography (PET) and single photon emission tomography (SPECT) imaging has seen an incredible growth in the past two decades. Despite the increased number of publications on PET/SPECT radiopharmaceuticals, the field lacked standardization of in vitro and in vivo parameters necessary for the characterization of any radiotracer. Through the efforts of the World Molecular Imaging Society Education Committee, this white paper lays down validation studies that are essential to chemically and biologically characterize new radiopharmaceuticals derived from small molecules, peptides or proteins.

View Article and Find Full Text PDF

Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response.

View Article and Find Full Text PDF

Pancreatic cancer is the fourth leading cause of cancer death among men and women in the United States, and pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of pancreatic cancer cases. PDAC is one of the most lethal gastrointestinal malignancies with an overall five-year survival rate of ~10%. Developing effective therapeutic strategies against pancreatic cancer is a great challenge.

View Article and Find Full Text PDF

Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals.

View Article and Find Full Text PDF

The past two decades have brought impressive advancements in immune modulation, particularly with the advent of both cancer immunotherapy and biologic therapeutics for inflammatory conditions. However, the dynamic nature of the immune response often complicates the assessment of therapeutic outcomes. Innovative imaging technologies are designed to bridge this gap and allow non-invasive visualization of immune cell presence and/or function in real time.

View Article and Find Full Text PDF

The -linked biantennary glycans on the heavy chain of immunoglobulin G (IgG) antibodies (mAbs) are instrumental in the recognition of the Fc region by Fc-gamma receptors (FcγR). In the case of full-length mAb-based imaging tracers targeting immune cell populations, these Fc:FcγR interactions can potentially deplete effector cells responsible for tumor clearance. To bypass this problem, we hypothesize that the enzymatic removal of the Fc glycans will disrupt Fc:FcγR interactions and spare tracer-targeted immune cells from depletion during immunopositron emission tomography (immunoPET) imaging.

View Article and Find Full Text PDF

Background: At least 50% of triple negative breast cancer (TNBC) overexpress the epidermal growth factor receptor, EGFR, which paved the way for clinical trials investigating its blockade. Outcomes remained dismal stemming from mechanisms of resistance particularly the nuclear cycling of EGFR, which is enhanced by Src activation. Attenuation of Src reversed nuclear translocation, restoring EGFR to the cell surface.

View Article and Find Full Text PDF

TRA-1-60 (TRA) is a cell-surface antigen implicated in drug resistance, relapse, and recurrence. Its expression has been reported in breast, prostate, pancreatic, ovarian tumors, and follicular lymphoma, which paved the development of the therapeutic antibody, Bstrongomab (Bsg), and its drug conjugates. Because patient selection is critical to achieve clinical benefit, a noninvasive imaging agent to select TRA+ lesions in patients is needed.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2) is a biomarker in breast cancer, and its overexpression is required to initiate therapies using HER2-targeted antibodies. Although trastuzumab is one of the most effective therapeutic antibodies in HER2-overexpressing breast cancer, a significant number of patients do not benefit from this therapy due to inherent or acquired resistance mechanisms. One reported mechanism of resistance is the steric hindering effect caused by the polymeric complex formed between hyaluronan and CD44, thus preventing trastuzumab from binding to HER2.

View Article and Find Full Text PDF

Precision targeting imaging agents and/or treatment agents to select cells or organs in the body remains a significant need and is an area of intense research. It has been hypothesized that the vitamin B12 (B12) dietary pathway, or components thereof, may be exploitable in this area. The question of whether gastric Intrinsic factor (IF), critical for B12 absorption in the GI tract via the cubilin receptor, could be used as a targeting moiety for the cubilin receptor systemically, has not been investigated.

View Article and Find Full Text PDF