Retention prediction models for reversed-phase liquid chromatography (RPLC) have been extensively studied owing to the fact that RPLC remains the most widely used chromatographic technique especially in the field of pharmaceutical and biomedical analyses. However, RPLC is not always the method of choice for the analysis of some compounds that have high polarity. Hydrophilic interaction chromatography (HILIC) has been gaining interest in the last few years as an alternative option to RPLC for the analysis of polar and hydrophilic analytes.
View Article and Find Full Text PDFThe effects of alcohol on the CE enantioseparation of selected basic drugs with gamma-CD as the chiral selector was investigated. The enantioseparation behavior of the analytes with gamma-CD in the absence and presence of different alcohols specifically methanol, ethanol, 2-propanol (IPA), and 2-methyl-2-propanol (TBA), the relationship of enantiomeric resolution (R(s)) values with either hydrophobicity or bulkiness of the alcohols, as well as the effect of these alcohols on interaction of the analytes with gamma-CD were studied. Results showed that hydrophobicity and/or bulkiness of alcohols have an influence on the enantioresolution of most of the analytes based on the relatively high correlation coefficients (R) obtained between R(s) versus log P and between R(s) versus ovality (i.
View Article and Find Full Text PDFRetention prediction models based on multiple linear regression (MLR) and artificial neural network (ANN) for adrenoreceptor agonists and antagonists chromatographed on a polyvinyl alcohol-bonded stationary phase under hydrophilic interaction chromatography were described. The models showed the combined effects of solute structure and mobile phase composition on the retention behavior of the analytes. Using stepwise MLR, the retentions of the studied compounds were satisfactorily described by a five-predictor model; the predictors being the %ACN, the logarithm of the partition coefficient (log D), the number of hydrogen bond donors (HBD), the desolvation energy for octanol (FOct), and the total absolute atomic charge (TAAC).
View Article and Find Full Text PDFSimultaneous enantioseparation with sensitive detection of four basic drugs, namely methoxamine, metaproterenol, terbutaline and carvedilol, using a 20-mum ID capillary with native beta-CD as the chiral selector was demonstrated by the large-volume sample stacking method. The procedure included conventional sample loading either hydrodynamically or electrokinetically at longer injection times without polarity switching and EOF manipulation. In comparison to conventional injections, depending on the analyte, about several hundred- and a thousand-fold sensitivity enhancement was achieved with the hydrodynamic and the electrokinetic injections, respectively.
View Article and Find Full Text PDFThe influences of the organic component of the mobile phase and the column temperature on the retention of ginsenosides on a poly(vinyl alcohol) (PVA) bonded stationary phase operated under hydrophilic interaction chromatographic mode were investigated. The retention of the ginsenosides was found to increase with increasing amount of acetonitrile (MeCN) in the mobile phase, which is typical of hydrophilic interaction chromatographic behavior. It was also found that the retention of the analytes was highly affected by the type of the organic modifier used.
View Article and Find Full Text PDFRetention prediction models using multiple linear regression (MLR) and artificial neural networks (ANN) were developed for adrenoreceptor agonists and antagonists chromatographed on a diol column under hydrophilic interaction chromatographic (HILIC) mode at three pH conditions (3.0, 4.0 and 5.
View Article and Find Full Text PDFThe development of retention prediction models for adrenoreceptor agonists and antagonists chromatographed on an unmodified silica stationary phase under the hydrophilic interaction chromatographic (HILIC) mode at three pH conditions (3.0, 4.0 and 5.
View Article and Find Full Text PDFThis study presents the advantages of the 20 microm inner diameter (id) capillary for the enantioseparation of ten basic drugs with native beta-CD as the chiral selector. The apparent binding constants of each enantiomeric pair were determined to calculate the optimum beta-CD concentration ([beta-CD]opt) and the optimization was subsequently carried out. Comparison of the 20 microm id with 50 microm id were made in terms of the results obtained in the optimization and detection limits.
View Article and Find Full Text PDF