Publications by authors named "Nerina Armata"

Five new organotin(IV) complexes of compositions [MeSnL] (1), [MeSnL] (2), [MeSnL] (3), [PhSnLH] (4) and [PhSnLH] (5) (where L=(2S)-2-((E)-((Z)-4-hydroxypent-3-en-2-ylidene)amino)-3-(1H-indol-3-yl)propanoate, L=(2S)-(E)-2-((2-hydroxybenzylidene)amino)-3-(1H-indol-3-yl)propanoate and L=(2S)-(E)-2-((1-(2-hydroxyphenyl)ethylidene)amino)-3-(1H-indol-3-yl)propanoate were synthesized and spectroscopically characterized. The crystal structures of 1-4 were determined. For the dimethyltin derivative 2, a polymeric chain structure was observed as a result of a long Sn∙∙∙O contact involving the exocyclic carbonyl oxygen-atom from the tridentate ligand of a neighboring Sn-complex unit.

View Article and Find Full Text PDF

The aim of this work is focused on the engineering of biocompatible complex systems composed of an inorganic and bio part. Graphene oxide (GO) and/or graphite oxide (GtO) were taken into account as potential substrates to the linkage of the protein such as Anemonia sulcata recombinant green fluorescent protein (rAsGFP). The complex system is obtained through a reduction process between GO/GtO and rAsGFP archiving an environmentally friendly biosynthesis.

View Article and Find Full Text PDF

Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3.

View Article and Find Full Text PDF

The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation spectroscopy.

View Article and Find Full Text PDF

The reactions of dimethylsulfide (DMS) with molecular iodine (I(2)) and iodine monochloride (ICl) have been studied by infrared matrix isolation spectroscopy by co-condensation of the reagents in an inert gas matrix. Molecular adducts of DMS + I(2) and DMS + ICl have also been prepared using standard synthetic methods. The vapour above each of these adducts trapped in an inert gas matrix gave the same infrared spectrum as that recorded for the corresponding co-condensation reaction.

View Article and Find Full Text PDF

The isomerization of cis-but-2-ene to trans-but-2-ene within a 22T H-ZSM-5 zeolite model, also in the presence of two adsorbed Pd atoms, has been studied by DFT calculations. The results obtained allow us to state that the cis/trans but-2-ene isomerization can easily proceed inside unsupported zeolite cavities. In this case, differently than in the gas phase reaction, the trans-but-2-ene is less stable than the cis-but-2-ene, when adsorbed on the zeolite inner surface.

View Article and Find Full Text PDF

The structures and the electronic properties of host-guest complexes formed by a cyclopeptidic tubular aggregate and the species CsN3, Cs2(N3)2, and Cs2N6 have been investigated by means of density functional theory. Taking advantage of the azide property to act as a bridge ligand between two or more metal cations, it may be possible to trapions inside a confined space. This could be important for the preparation of polynitrogen molecules Nn.

View Article and Find Full Text PDF