The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases.
View Article and Find Full Text PDFGenetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1.
View Article and Find Full Text PDFWe identified the BCL11A protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. , DNA repair assays demonstrate that both BCL11A and a small recombinant BCL11A protein that is devoid of DNA binding and transcription regulatory domains can stimulate the enzymatic activities of two base excision repair enzymes: NTHL1 and DNA Pol β. Increased DNA repair efficiency, in particular of the base excision repair pathway, is essential for many cancer cells to proliferate in the presence of elevated reactive oxygen species (ROS) produced by cancer-associated metabolic changes.
View Article and Find Full Text PDFCancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism.
View Article and Find Full Text PDFRecent studies revealed that CUT domains function as accessory factors that accelerate DNA repair by stimulating the enzymatic activities of the base excision repair enzymes OGG1, APE1, and DNA pol β. Strikingly, the role of CUT domain proteins in DNA repair is exploited by cancer cells to facilitate their survival. Cancer cells in which the RAS pathway is activated produce an excess of reactive oxygen species (ROS) which, if not counterbalanced by increased production of antioxidants, causes sustained oxidative DNA damage and, ultimately, cell senescence.
View Article and Find Full Text PDFThe full-length CUX1 protein isoform was previously shown to function as an auxiliary factor in base excision repair (BER). Specifically, CUT domains within CUX1 stimulate the enzymatic activities of the OGG1 DNA glycosylase and APE1 endonuclease. Moreover, ectopic expression of CUX1 or CUT domains increased the resistance of cancer cells to treatments that cause oxidative DNA damage and mono-alkylation of bases.
View Article and Find Full Text PDFSomatic mutations of the CUT-like homeobox 1 () gene ( ) can be found in myeloid neoplasms (MNs), in particular, in myelodysplastic syndromes (MDSs). The locus is also deleted in 3 of 4 MN cases with -7/del(7q). A cohort of 1480 MN patients was used to characterize clinical features and clonal hierarchy associated with and deletions ( ) and to analyze their functional consequences in vitro.
View Article and Find Full Text PDFObjective: Preeclampsia often complicates pregnancies after maternal kidney transplantation. We aimed to assess whether preeclampsia is associated with kidney function decline either during the pregnancy or in the long term.
Methods: We performed an international multicenter retrospective cohort study.
Background: Cut Like homeobox 1 (CUX1), which encodes an auxiliary factor in base excision repair, resides on 7q22.1, the most frequently and highly amplified chromosomal region in glioblastomas. The resistance of glioblastoma cells to the mono-alkylating agent temozolomide is determined to some extent by the activity of apurinic/apyrimidinic endonuclease 1 (APE1).
View Article and Find Full Text PDFIonizing radiation generates a broad spectrum of oxidative DNA lesions, including oxidized base products, abasic sites, single-strand breaks and double-strand breaks. The CUX1 protein was recently shown to function as an auxiliary factor that stimulates enzymatic activities of OGG1 through its CUT domains. In the present study, we investigated the requirement for CUX1 and OGG1 in the resistance to radiation.
View Article and Find Full Text PDFBase excision repair is initiated by DNA glycosylases that recognize specific altered bases. DNA glycosylases for oxidized bases carry both a glycosylase activity that removes the faulty base and an apyrimidinic/apurinic lyase activity that introduces a single-strand DNA incision. In particular, the CUT domains within the CUX1 and CUX2 proteins were recently shown to interact with the 8-oxoguanine (8-oxoG) DNA glycosylase and stimulate its enzymatic activities.
View Article and Find Full Text PDFCUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair.
View Article and Find Full Text PDFDespite having long telomeres, mouse embryo fibroblasts (MEFs) senesce more rapidly than human diploid fibroblasts because of the accumulation of oxidative DNA damage. The CUX1 homeodomain protein was recently found to prevent senescence in RAS-driven cancer cells that produce elevated levels of reactive-oxygen species. Here we show that Cux1-/- MEFs are unable to proliferate in atmospheric (20%) oxygen although they can proliferate normally in physiological (3%) oxygen levels.
View Article and Find Full Text PDFAutocrine activation of the Wnt/β-catenin pathway occurs in several cancers, notably in breast tumors, and is associated with higher expression of various Wnt ligands. Using various inhibitors of the FZD/LRP receptor complex, we demonstrate that some adenosquamous carcinomas that develop in MMTV-CUX1 transgenic mice represent a model for autocrine activation of the Wnt/β-catenin pathway. By comparing expression profiles of laser-capture microdissected mammary tumors, we identify Glis1 as a transcription factor that is highly expressed in the subset of tumors with elevated Wnt gene expression.
View Article and Find Full Text PDFNat Rev Cancer
October 2014
CUT-like homeobox 1 (CUX1) is a homeobox gene that is implicated in both tumour suppression and progression. The accumulated evidence supports a model of haploinsufficiency whereby reduced CUX1 expression promotes tumour development. Paradoxically, increased CUX1 expression is associated with tumour progression, and ectopic CUX1 expression in transgenic mice increases tumour burden in several tissues.
View Article and Find Full Text PDFThe Cut homeobox 1 (CUX1) gene is a target of loss-of-heterozygosity in many cancers, yet elevated CUX1 expression is frequently observed and is associated with shorter disease-free survival. The dual role of CUX1 in cancer is illustrated by the fact that most cell lines with CUX1 LOH display amplification of the remaining allele, suggesting that decreased CUX1 expression facilitates tumor development while increased CUX1 expression is needed in tumorigenic cells. Indeed, CUX1 was found in a genome-wide RNAi screen to identify synthetic lethal interactions with oncogenic RAS.
View Article and Find Full Text PDFBackground: Overexpression of the Cut homeobox 1 gene, CUX1, inversely correlates with patient survival in breast cancers. Cell-based assays and molecular studies have revealed that transcriptional regulation by CUX1 involves mostly the proteolytically processed p110 isoform. As there is no antibody specific to p110 CUX1 only, an alternate strategy must be employed to identify its targets.
View Article and Find Full Text PDFThe p110 Cut homeobox 1 (CUX1) transcription factor regulates genes involved in DNA replication and chromosome segregation. Using a genome-wide-approach, we now demonstrate that CUX1 also modulates the constitutive expression of DNA damage response genes, including ones encoding ATM and ATR, as well as proteins involved in DNA damage-induced activation of, and signaling through, these kinases. Consistently, RNAi knockdown or genetic inactivation of CUX1 reduced ATM/ATR expression and negatively impacted hallmark protective responses mediated by ATM and ATR following exposure to ionizing radiation (IR) and UV, respectively.
View Article and Find Full Text PDFChIP-chip and expression analyses indicated that CUX1 transcription factors regulate a large number of genes and microRNAs involved in multiple cellular processes. Indeed, in proliferating cells CUX1 was shown to regulate several genes involved in DNA replication, progression into S phase and later, the spindle assembly checkpoint that controls progression through mitosis. siRNA-mediated knockdown established that CUX1 is required for cell motility.
View Article and Find Full Text PDFChromatin immunoprecipitation (ChIP) has become an essential assay in the field of transcriptional regulation. It is currently the most popular method to monitor the in vivo interaction between a protein and specific genomic sites. The method can also serve to identify novel transcriptional targets when the immunoprecipitated chromatin, sometimes called chipped DNA, is used either as a probe in hybridization experiments with microarrays of genomic DNA (ChIP-chip) or as template in DNA sequencing (ChIP-Seq).
View Article and Find Full Text PDFα-fetoprotein (AFP) is not only a widely used biomarker in hepatocellular carcinoma (HCC) surveillance, but is also clinically recognized as linked with aggressive tumour behaviour. Here we show that deregulation of microRNA122, a liver-specific microRNA, is a cause of both AFP elevation and a more biologically aggressive phenotype in HCC. We identify CUX1, a direct target of microRNA122, as a common central mediator of these two effects.
View Article and Find Full Text PDFCell populations able to generate a large repertoire of genetic variants have increased potential to generate tumor cells that survive through the multiple selection steps involved in tumor progression. A mechanism for the generation of aneuploid cancer cells involves passage through a tetraploid stage. Supernumerary centrosomes, however, can lead to multipolar mitosis and cell death.
View Article and Find Full Text PDFThe p110 CUX1 homeodomain protein participates in the activation of DNA replication genes in part by increasing the affinity of E2F factors for the promoters of these genes. CUX1 expression is very weak in quiescent cells and increases during G(1). Biochemical activities associated with transcriptional activation by CUX1 are potentiated by post-translational modifications in late G(1), notably a proteolytic processing event that generates p110 CUX1.
View Article and Find Full Text PDF