Pharmaceuticals and personal care products (PPCPs) monitoring in surface water is crucial to address the escalating threat of antimicrobial resistance and safeguard public health. This study aimed to investigate the occurrence of 21 different PPCPs, including wastewater chemical markers, antibiotics, and parabens in the surface water of Chennai city using Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-MS/MS) analysis. It is noteworthy that chemical markers viz.
View Article and Find Full Text PDFThe inclusion of ruthenium (Ru) to decorate nickel sulphide (Ru@NiS/Ni foam) resulted in a highly efficient electrocatalyst for the alkaline HER by enhancing water dissociation at the interface and reducing the energy barrier of the Volmer step. This strategic fusion significantly boosts the catalyst's performance in facilitating hydrogen production.
View Article and Find Full Text PDFThe photocatalytic production of hydrogen (H) from water is a vital avenue towards sustainable energy and addressing global environmental challenges. To maximize efficiency, harnessing the synergistic effects of multiple co-catalysts is essential, as these interactions can significantly enhance performance. In this study, we introduce a ternary heterojunction composed of a nickel-imidazole framework (Ni-MOF), graphitic carbon nitride (CN), and TiC MXene (TC), employing solvothermal and wet impregnation methods, featuring a well-designed Type II heterojunction and a noble metal-free Schottky junction for efficient hydrogen evolution.
View Article and Find Full Text PDFIn this study, we present an in situ solvothermal approach for synthesizing a highly efficient bifunctional CuBiO/BiO composite catalyst for applications in H production and the removal of organic pollutants. Various characterization techniques, including XRD, UV-vis DRS, SEM, TEM, and EIS, were used to characterize the prepared catalyst. Density functional theory calculations confirmed a Z-scheme mechanism, revealing the charge transfer mechanism from the BiO surface to the CuBiO surface.
View Article and Find Full Text PDFMetal-Organic Frameworks (MOFs) are extensively used as electrode material in various sensing applications due to their efficacious porous nature and tunable properties. However, pristine MOFs lack conductive attributes that hinder their wide usage in electrochemical applications. Electropolymerization of several aromatic monomers has been a widely used strategy for preparing conducting electrode materials for various sensing applications in the past decades.
View Article and Find Full Text PDFIn this study, a trimetallic catalyst, NiWRu@NF, is electrodeposited onto nickel foam using chronoamperometry to enhance the hydrogen evolution reaction (HER) in alkaline water electrolysis. The catalyst combines nickel, tungsten, and ruthenium components, strategically designed for efficiency and cost-effectiveness, hydroxyl transfer and water dissociation, and acceleration of hydrogen combination, respectively. Evaluation of NiWRu@NF reveals exceptional performance, with a low overpotential of -50 mV and high current density of -10 mA cm, signifying its efficiency in promoting HER.
View Article and Find Full Text PDFA strategy to enhance the photocatalytic performance of metal-organic framework (MOF) based systems for the efficient elimination of Cr(VI) ions from polluted water under visible light irradiation has been developed by constructing MOF@MOF heterojunctions. Specifically, IRMOF-3 was grown in situ around NH-MIL-101(Fe) based on interfacial Lewis acid-base interaction using 2-aminoterephthalic acid (ATA) as a linker, resulting in the formation of a MOF@MOF heterojunction, designated as IRMOF-3@NH-MIL-101(Fe). In comparison to individual MOFs, the IRMOF-3@NH-MIL-101(Fe) heterojunction exhibited a significantly higher photocatalytic reduction efficiency for Cr(VI), achieving a reduction of 95.
View Article and Find Full Text PDFBeing a macrolide antibiotic, the antiviral and anti-inflammatory properties of azithromycin (AZM) were taken advantage of during the COVID-19 pandemic which led to the overuse of AZM resulting in excessive release and accumulation in the waterways and ecosystem causing unpleasant threats to humankind. This demands the necessity for a highly sensitive material being capable of recognizing AZM in wastewater. Mindful of the optical attributes of organic ligand structures, we have constructed a hybrid material by chelating Zn with pyridyl benzimidazole (PBI).
View Article and Find Full Text PDFThe increasing pollution of water bodies with organic contaminants, including antibiotics, has become a significant environmental concern. In this study, a noble-metal-free alternative, NiCo bimetal cocatalyst, was synthesized and applied to enhance the photocatalytic degradation of the antibiotic tetracycline (TC) using BiVO as the photocatalyst under the visible spectrum. The NiCo-BiVO nanocomposite exhibited improved visible light absorption, reduced recombination rate of charge carriers, and enhanced electrochemical properties.
View Article and Find Full Text PDFEmploying an affordable and sustainable visible-light-driven system is crucial for organic pollutant abatement, in the field of photocatalysis. In the present investigation, a pioneering photocatalyst zinc indium sulphide, ZnInS (ZIS) supported on a silica gel matrix, SiO (SG) which is the leftover material after multiple rounds of dehumidification processes, was synthesized. The fabrication of the heterojunction facilitated enhancement in light absorption and charge separation efficiency.
View Article and Find Full Text PDFUltrason Sonochem
November 2023
Metal-organic frameworks (MOFs) are a significant class of porous, crystalline materials composed of metal ions (clusters) and organic ligands. The potential use of copper MOF (Cu-BTC) for the sonophotocatalytic degradation of Tetracycline (TC) antibiotic was investigated in this study. To enhance its catalytic efficiency, S-scheme heterojunction was created by combining Cu-BTC with Zinc tungstate (ZnWO), employing an ultrasound-assisted hydrothermal method.
View Article and Find Full Text PDFFluoroquinolones (FQs) are the class of Antibiotics (ABs) that have been extensively used worldwide for the treatment of diseases caused by bacterial infections. In India, most of these untreated ABs and their unused metabolites present in treated and untreated wastewater end up in agricultural land and water bodies. This can accelerate the problem of antimicrobial resistance in the community.
View Article and Find Full Text PDFThe waste management of polyethylene terephthalate (PET)-derived polyester (PES) textile is a global issue, and material recovery through chemical recycling can restore a circular economy. In our investigation, microwave-induced catalytic aminolysis and glycolysis of PES textile wastes using Ag-doped ZnO nanoparticles have been proposed. Ag-doped ZnO is prepared by the sol-gel method and characterised by XRD, FT-IR, UV-Vis, SEM-EDX and TEM.
View Article and Find Full Text PDFLangmuir
May 2023
The efficient use of visible light is necessary to take advantage of photocatalytic processes in both indoor and outdoor circumstances. Precisely manipulating the in situ growth method of heterojunctions is an effective way to promote photogenerated charge separation. Herein, the SrFeO@B-rGO catalyst was prepared by an in situ growth method.
View Article and Find Full Text PDFIn this article, we present a sapiential method for producing highly effective oxygen-containing CN with hierarchical porous hollow nanotubes (HTCN) using thermal polycondensation of oxalic acid-assisted supramolecular aggregates. As a result of the synergistic effect of spatial charge separation and optical absorption ability, HTCN outperforms pristine CN nanosheets (NSCN) in photocatalytic hydrogen production. This research will provide a novel cognitive perspective and understanding for constructing contemporary hydrogen production photocatalysts.
View Article and Find Full Text PDFPhotocatalysis is one of the fascinating fields for the wastewater treatment. In this regard, the present study deals with an effective visible light active BiYO/g-CN heterojunction nanocomposite photocatalyst with various ratios of BiYO and g-CN (1:3, 1:1 and 3:1), synthesised by a wet chemical approach. The as-synthesised nanocomposite photocatalysts were investigated via different physicochemical approaches like Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electrons microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and photoelectrochemical studies to characterise the crystal structure, morphology, optical absorption characteristics and photoelectrochemical properties.
View Article and Find Full Text PDFA novel FeMoO/g-CN-2D/2D Z-scheme heterojunction photocatalyst was prepared via wet chemical method. The observed structural morphology of FeMoO/g-CN reveals the 2D-iron molybdate (FeMoO) nanoplates compiled with the 2D-graphitic carbon nitride (g-CN) nanosheets like structure. The photocatalytic activity of the g-CN, FeMoO, and FeMoO/g-CN composites were studied via the degradation of Rhodamine B (RhB) as targeted textile dye under visible light irradiation (VLI).
View Article and Find Full Text PDFConstruction of the Z-scheme heterojunction photocatalyst achieved highly improved photocatalytic ability by its high redox ability of the photoinduced e-h pairs. In the study, Z-scheme g-CN/BiYWO heterojunction photocatalyst is prepared by the single-step hydrothermal method. Further, its photocatalytic ability was assessed by degrading methylene blue under visible light exposure.
View Article and Find Full Text PDFPhotocatalysis is one of the promising method to degrade harmful organic pollutants under visible light exposure. In this work, a novel NiVO/BiVO nanocomposite has been prepared by one-pot hydrothermal method, and investigated through X-ray diffraction, FT-IR, UV-visible diffuse reflectance spectroscopy, scanning and transmission electron microscopy and photoluminescence techniques. Subsequently, the photocatalytic performance of NiVO/BiVO nanocomposite has been examined by degrading AO7 under visible light illumination.
View Article and Find Full Text PDFThe presence of antibiotics in the aqueous environment can alter the water microbiome, inducing antimicrobial resistance genes. Hence, the occurrence of 18 antibiotics belonging to sulfonamides, fluoroquinolones, tetracyclines, phenicols, and macrolides classes were investigated in surface water, groundwater, and sewage treatment plants in Chennai city and the suburbs. Fluoroquinolones had the maximum detection frequency in both influent and effluent samples of urban and suburban STPs, with ofloxacin and ciprofloxacin showing the highest influent concentrations.
View Article and Find Full Text PDFPharmaceutical compounds in water bodies pose hazards to the ecosystem because of their biotoxicity potency. To eradicate such pharmaceutical compounds, a novel g-CN/BiOBr/FeO nanocomposites was prepared using a simplistic route and appraised for photodegradation of model tetracycline antibiotics. The g-CN/BiOBr/FeO nanocomposites exhibited complete tetracycline degradation in just 60 min exposure of simulated light irradiation, which is 6 times higher than the g-CN.
View Article and Find Full Text PDFWe report on the fabrication of lysozyme microspheres (LyMs) incorporated with gold nanorods (NRs) as a distinctive approach for the encapsulation and release of an anticancer drug, 5-Fluorouracil (5-FU). LyMs with an average size of 4.0 ± 1.
View Article and Find Full Text PDFVisible light active 1D/2D-NiMoO/BiOI nanocomposite photocatalyst has been constructed by single step solvothermal method. Various compositions of NiMoO/BiOI nanocomposites are prepared by loading different amounts of nickel molybdate (NiMoO) (1, 2, 3 wt%) to the bismuth oxy iodide (BiOI) and investigated by XRD, FTIR, SEM, EDAX, TEM, UV-vis DRS, and PL analysis. Among the as-prepared photocatalysts, 1 wt% NiMoO incorporated BiOI (NMBI-1) showed superior photocatalytic activity with a rate constant of 0.
View Article and Find Full Text PDFThe development of noble metal-anchored semiconductors for photocatalytic processes is now garnering interest for potential application to toxic pollutants as well as antibiotic degradation. Herein, we report novel Ag@p-g-CN-BiMoO nanocomposites synthesized by facile hydrothermal and calcination methods with a size of about 50 nm, exhibiting superior photocatalytic activity for charge separation. The resulting nanocomposites were evaluated by various physiochemical techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy.
View Article and Find Full Text PDFA visible light driven BiOBr/BiYWO nanocomposite photocatalyst of various compositions are prepared by the addition of different amounts of KBr (0.5, 1.0, 1.
View Article and Find Full Text PDF