Publications by authors named "Nenian Charles"

Elpasolite- and cryolite-type oxyfluorides can be regarded as superstructures of perovskite and exhibit structural diversity. While maintaining a similar structural topology with the prototype structures, changes in the size, electronegativity, and charge of cation and/or anion inevitably lead to structural evolution. Therefore, the nominal one-to-one relation suggested by a doubled formula of perovskite does not guarantee a simple 2-fold superstructure for many cases.

View Article and Find Full Text PDF

The burgeoning field of anion engineering in oxide-based compounds aims to tune physical properties by incorporating additional anions of different size, electronegativity, and charge. For example, oxychalcogenides, oxynitrides, oxypnictides, and oxyhalides may display new or enhanced responses not readily predicted from or even absent in the simpler homoanionic (oxide) compounds because of their proximity to the ionocovalent-bonding boundary provided by contrasting polarizabilities of the anions. In addition, multiple anions allow heteroanionic materials to span a more complex atomic structure design palette and interaction space than the homoanionic oxide-only analogs.

View Article and Find Full Text PDF

Anion redox in lithium transition metal oxides such as LiRuO and LiMnO has catalyzed intensive research efforts to find transition metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of observed anion redox remains debated, and more direct experimental evidence is needed. In this work, we have shown electronic signatures of oxygen-oxygen coupling, direct evidence central to lattice oxygen redox (O/(O)), in charged LiRuO after Ru oxidation (Ru/Ru) upon first-electron removal with lithium de-intercalation.

View Article and Find Full Text PDF

The double perovskite CaMnTiO, is a rare A-site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTiO. We further explore the material properties of CaMnTiO, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient.

View Article and Find Full Text PDF

Phase transitions are ubiquitous in structurally complex transition metal compounds composed of homoanionic polyhedra, including nitrides, oxides, and fluorides. The symmetry breaking that occurs across polymorphic transitions is often achieved by small atomic displacements, rendering these displacive transitions reversible. In contrast, elemental crystals, alloys, and simple minerals will exhibit reconstructive "bond-breaking" transitions.

View Article and Find Full Text PDF