To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their variance within the population, consistently with their related enzymes. The overall higher CV values for metabolites as compared to the tested enzymes are indicative for their greater phenotypic plasticity.
View Article and Find Full Text PDFCarbon (C) and nitrogen (N) metabolism are critical to plant growth and development and are at the basis of crop yield and adaptation. We performed high-throughput metabolite analyses on over 12,000 samples from the nested association mapping population to identify genetic variation in C and N metabolism in maize (Zea mays ssp. mays).
View Article and Find Full Text PDFPhenotypic variation in natural populations results from a combination of genetic effects, environmental effects, and gene-by-environment interactions. Despite the vast amount of genomic data becoming available, many pressing questions remain about the nature of genetic mutations that underlie functional variation. We present the results of combining genome-wide association analysis of 41 different phenotypes in ∼ 5,000 inbred maize lines to analyze patterns of high-resolution genetic association among of 28.
View Article and Find Full Text PDFUnderstanding the genetic basis of nitrogen and carbon metabolism will accelerate the development of plant varieties with high yield and improved nitrogen use efficiency. A robotized platform was used to measure the activities of 10 enzymes from carbon and nitrogen metabolism in the maize (Zea mays) intermated B73 × Mo17 mapping population, which provides almost a 4-fold increase in genetic map distance compared with conventional mapping populations. Seedling/juvenile biomass was included to identify its genetic factors and relationships with enzyme activities.
View Article and Find Full Text PDFBackground: Central carbon metabolism (CCM) is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping.
View Article and Find Full Text PDF