Environ Health (Wash)
December 2023
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process.
View Article and Find Full Text PDFDelivering cancer therapeutics to tumors necessitates their escape from the surrounding blood vessels. Tumor vasculatures are not always sufficiently leaky. Herein, we engineer therapeutically competent leakage of therapeutics from tumor vasculature with gold nanoparticles capable of inducing endothelial leakiness (NanoEL).
View Article and Find Full Text PDFFerroptosis-based nanoplatforms have shown great potential in cancer therapy. However, they also face issues such as degradation and metabolism. Carrier-free nanoplatforms consisting of active drugs can effectively avoid the security issues associated with additional carrier ingredients.
View Article and Find Full Text PDFThe shape effect is an important parameter in the design of novel nanomaterials. Engineering the shape of nanomaterials is an effective strategy for optimizing their bioactive performance. Nanomaterials with a unique shape are beneficial to blood circulation, tumor targeting, cell uptake, and even improved magnetism properties.
View Article and Find Full Text PDFSmart nanomaterials with stimuli-responsive imaging enhancement have been widely developed to meet the requirements of accurate cancer diagnosis. However, these imaging nanoenhancers tend to be always on during circulation, which significantly increases the background signal when assessing the imaging performance. To improve unfavorable signal-to-noise ratios, an effective way is to shield the noise signal of these nanoprobes in non-targeted areas.
View Article and Find Full Text PDFAll intravenous delivered nanomedicine needs to escape from the blood vessel to exert their therapeutic efficacy at their designated site of action. Failure to do so increases the possibility of detrimental side effects and negates their therapeutic intent. Many powerful anticancer nanomedicine strategies rely solely on the tumor derived enhanced permeability and retention (EPR) effect for the only mode of escaping from the tumor vasculature.
View Article and Find Full Text PDFThe present work demonstrated and compared the anti-inflammatory effects of celery leaf (CLE) and stem (CSE) extracts. LC-MS-based metabolomics were an effective approach to achieve the biomarker identification and pathway elucidation associated with the reduction in inflammatory responses. The celery extracts suppressed LPS-induced NO production in RAW 264.
View Article and Find Full Text PDFNanomaterial-induced endothelial leakiness (NanoEL) is an interfacial phenomenon denoting the paracellular transport of nanoparticles that is pertinent to nanotoxicology, nanomedicine and biomedical engineering. While the NanoEL phenomenon is complementary to the enhanced permeability and retention effect in terms of their common applicability to delineating the permeability and behavior of nanoparticles in tumoral environments, these two effects significantly differ in scope, origin, and manifestation. In the current study, the descriptors are fully examined of the NanoEL phenomenon elicited by generic citrate-coated gold nanoparticles (AuNPs) of changing size and concentration, from microscopic gap formation and actin reorganization down to molecular signaling pathways and nanoscale interactions of AuNPs with VE-cadherin and its intra/extracellular cofactors.
View Article and Find Full Text PDFAnti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane.
View Article and Find Full Text PDFQuantum dots (QDs) originating from two-dimensional (2D) sheets of graphitic carbon nitride (g-CN), graphene, hexagonal boron nitride (h-BN), monoatomic buckled crystals (phosphorene), germanene, silicene and transition metal dichalcogenides (TMDCs) are emerging zero-dimensional materials. These QDs possess diverse optical properties, are chemically stable, have surprisingly excellent biocompatibility and are relatively amenable to surface modifications. It is therefore not difficult to see that these QDs have potential in a variety of bioapplications, including biosensing, bioimaging and anticancer and antimicrobial therapy.
View Article and Find Full Text PDF