With large-scale Monte Carlo simulations, we investigate the nonsteady relaxation at the dynamic depinning transition in the two-dimensional Gaussian random-field Ising model. The dynamic scaling behavior is carefully analyzed, and the transition fields as well as static and dynamic exponents are accurately determined based on the short-time dynamic scaling form. Different from the usual assumption, two distinguished growth processes of spatial correlation lengths for the velocity and height of the domain wall are found.
View Article and Find Full Text PDFBy employing the Dirac-Frenkel time-dependent variational principle, we study the dynamical properties of the Holstein molecular crystal model with diagonal and off-diagonal exciton-phonon coupling. A linear combination of the Davydov D1 (D2) ansatz, referred to as the "multi-D1 ansatz" ("multi-D2 ansatz"), is used as the trial state with enhanced accuracy but without sacrificing efficiency. The time evolution of the exciton probability is found to be in perfect agreement with that of the hierarchy equations of motion, demonstrating the promise the multiple Davydov trial states hold as an efficient, robust description of dynamics of complex quantum systems.
View Article and Find Full Text PDFDynamics of the sub-Ohmic spin-boson model is investigated by employing a multitude of the Davydov D1 trial states, also known as the multi-D1 Ansatz. Accuracy in dynamics simulations is improved significantly over the single D1 Ansatz, especially in the weak system-bath coupling regime. The reliability of the multi-D1 Ansatz for various coupling strengths and initial conditions is also systematically examined, with results compared closely with those of the hierarchy equations of motion and the path integral Monte Carlo approaches.
View Article and Find Full Text PDFIt has long been a puzzle on what drives charge separation in artificial polymeric solar cells as a consensus has yet to emerge among rivaling theories based upon electronic localization and delocalization pictures. Here we propose an alternative using the two-bath spin-boson model with simultaneous diagonal and off-diagonal coupling: the critical phase, which is born out of the competition of the two coupling types, and is neither localized nor delocalized. The decoherence-free feature of the critical phase also helps explain sustained coherence of the charge-transfer state.
View Article and Find Full Text PDFWe propose an extension to the Davydov D2 Ansatz in the dynamics study of the Holstein molecular crystal model with diagonal and off-diagonal exciton-phonon coupling using the Dirac-Frenkel time-dependent variational principle. The new trial state by the name of the "multi-D2 Ansatz" is a linear combination of Davydov D2 trial states, and its validity is carefully examined by quantifying how faithfully it follows the Schrödinger equation. Considerable improvements in accuracy have been demonstrated in comparison with the usual Davydov trial states, i.
View Article and Find Full Text PDFThe cause of symmetry is usually subtle, and its study often leads to a deeper understanding of the bearer of the symmetry. To gain insight into the dynamics driving the growth and evolution of genomes, we conducted a comprehensive study of textual symmetries in 786 complete chromosomes. We focused on symmetry based on our belief that, in spite of their extreme diversity, genomes must share common dynamical principles and mechanisms that drive their growth and evolution, and that the most robust footprints of such dynamics are symmetry related.
View Article and Find Full Text PDF