Publications by authors named "Nenghui Ye"

Unraveling key ABA pathways, including OsWRKY71-OsABA8ox1 and OsbZIP73-OsNCED5, provides valuable insights for improving cold tolerance in rice breeding for cold-prone regions. Cold stress limits rice (Oryza sativa L.) production in cooler climates.

View Article and Find Full Text PDF

As a common pollutant, cadmium (Cd) poses a serious threat to the growth and development of plants. Currently, there is no effective method to elucidate the protective mechanism of Cd in plant cells. For the first time, we designed a Cd fluorescent probe to observe the adsorption and sequestration of Cd in rice cell walls and vacuoles.

View Article and Find Full Text PDF

The seed, a critical organ in higher plants, serves as a primary determinant of agricultural productivity, with its quality directly influencing crop yield. Improper storage conditions can diminish seed vigor, adversely affecting seed germination and seedling establishment. Therefore, understanding the seed-aging process and exploring strategies to enhance seed-aging resistance are paramount.

View Article and Find Full Text PDF

Hybrid rice (Oryza sativa) generally outperforms its inbred parents in yield and stress tolerance, a phenomenon termed heterosis, but the underlying mechanism is not completely understood. Here, we combined transcriptome, proteome, physiological, and heterosis analyses to examine the salt response of super hybrid rice Chaoyou1000 (CY1000). In addition to surpassing the mean values for its two parents (mid-parent heterosis), CY1000 exhibited a higher reactive oxygen species scavenging ability than both its parents (over-parent heterosis or heterobeltiosis).

View Article and Find Full Text PDF

Low-temperature germination (LTG) is an important agronomic trait for direct-seeding cultivation of rice (Oryza sativa). Both OsMYB30 and OsTPP1 regulate the cold stress response in rice, but the function of OsMYB30 and OsTPP1 in regulating LTG and the underlying molecular mechanism remains unknown. Employing transcriptomics and functional studies revealed a sugar signaling pathway that regulates seed germination in response to low temperature (LT).

View Article and Find Full Text PDF

Seed dormancy and germination determine the beginning of the life cycle of plants, and the phytohormone ABA plays a crucial role in regulation of seed dormancy and germination. However, the upstream regulatory mechanism of ABA metabolism during dormancy releasing is still remain elusive. In this paper, we present a novel mechanism of OsNAC2 in controlling ABA metabolism and regulation of seed dormancy.

View Article and Find Full Text PDF

Salt stress is one of the major environmental stresses that imposes constraints to plant growth and production. Abscisic acid (ABA) has been well-proven to function as a central integrator in plant under salt stress, and trehalose (Tre) has emerged as an excellent osmolyte to induce salt tolerance. However, the interacting mechanism between ABA and Tre in rice seedlings under salt stress is still obscure.

View Article and Find Full Text PDF

Light, temperature, water, and fertilizer are arguably the most important environmental factors regulating crop growth and productivity. Environmental stimuli, including low light, extreme temperatures, and water stresses caused by climate change, affect crop growth and production and pose a growing threat to sustainable agriculture. Furthermore, soil salinity is another major environmental constraint affecting crop growth and threatening global food security.

View Article and Find Full Text PDF

Male sterility enables hybrid crop breeding to increase yields and has been extensively studied. But thermo-sensitive female sterility, which is an ideal property that may enable full mechanization in hybrid rice breeding, has rarely been investigated due to the absence of such germplasm. Here we identify the spontaneous thermo-sensitive female sterility 1 (tfs1) mutation that confers complete sterility under regular/high temperature and partial fertility under low temperature as a point mutation in ARGONAUTE7 (AGO7).

View Article and Find Full Text PDF

Poor grain filling of inferior spikelets, especially in some large-panicle rice varieties, is becoming a major limitation in breaking the ceiling of rice production. In our previous studies, we proved that post-anthesis moderate soil drying (MD) was an effective way to promote starch synthesis and inferior grain filling. As one of the most important regulatory processes in response to environmental cues and at different developmental stages, the function of alternative splicing (AS) has not yet been revealed in regulating grain filling under MD conditions.

View Article and Find Full Text PDF

Grain size is an important component of quality and harvest traits in the field of rice breeding. Although numerous quantitative trait loci (QTLs) of grain size in rice have been reported, the molecular mechanisms of these QTLs remain poorly understood, and further research on QTL observation and candidate gene identification is warranted. In our research, we developed a suite of F2 intercross populations from a cross of 9311 and CG.

View Article and Find Full Text PDF

Salt stress has the most severe impact on plant growth and development, including seed germination. However, little is known about the mechanism of NR (nitrate reductase)-associated nitric oxide (NO) regulates salt tolerance during seed germination in rice. Herein, we shown that inhibition of seed germination by salt stress was significantly impaired by sodium nitroferricyanide (SNP), a NO donor.

View Article and Find Full Text PDF

Poor grain filling of inferior spikelets is becoming a severe problem in some super rice varieties with large panicles. Moderate soil drying (MD) after pollination has been proven to be a practical strategy to promote grain filling. However, the molecular mechanisms underlying this phenomenon remain largely unexplored.

View Article and Find Full Text PDF

Background: Coleorhiza hairs, are sheath-like outgrowth organs in the seeds of Poaceae family that look like root hair but develop from the coleorhiza epidermal cells during seed imbibition. The major role of coleorhiza hair in seed germination involves facilitating water uptake and nutrient supply for seed germination. However, molecular basis of coleorhiza hair development and underlying genes and metabolic pathways during seed germination are largely unknown and need to be established.

View Article and Find Full Text PDF

Alternative splicing is a widespread phenomenon, which generates multiple isoforms of the gene product. Reproductive development is the key process for crop production. Although numerous forms of alternative splicing have been identified in model plants, large-scale study of alternative splicing dynamics during reproductive development in rice has not been conducted.

View Article and Find Full Text PDF

The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well-watered conditions via 16S ribosomal RNA amplicon sequencing.

View Article and Find Full Text PDF

Background: Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for HO production in plants. Catalase (CAT)-dependent HO decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the HO production in IAA regulation.

View Article and Find Full Text PDF

Drought stress can significantly affect plant growth and agricultural productivity. Thus, it is essential to explore and identify the optimal genes for the improvement of crop drought tolerance. Here, a fungal NADP(H)-dependent glutamate dehydrogenase gene (AcGDH) was isolated from Aspergillus candidus, and heterologously expressed in rice.

View Article and Find Full Text PDF

Seed germination is essential for direct seeding in rice. It has been demonstrated that trehalose-6-phosphate phosphatase 1 (OsTPP1) plays roles in improving yield and stress tolerance in rice. In this study, the roles of OsTPP1 on seed germination in rice were investigated.

View Article and Find Full Text PDF

Moderate soil drying (MD) imposed at the post-anthesis stage significantly improves carbon reserve remobilization in rice stems, increasing grain yield. However, the methylome and transcriptome profiles of carbon reserve remobilization under MD are obscure in indica and japonica rice stems. Here, we generated whole-genome single-base resolution maps of the DNA methylome in indica and japonica rice stems.

View Article and Find Full Text PDF

In rice (), a specific temporary source organ, the stem, is important for grain filling, and moderate soil drying (MD) enhanced carbon reserve flow from stems to increase grain yield. The dynamics and biological relevance of DNA methylation in carbon reserve remobilization during grain filling are unknown. Here, we generated whole-genome single-base resolution maps of the DNA methylome in the stem.

View Article and Find Full Text PDF

Rice () molecular breeding has gained considerable attention in recent years, but inaccurate genome annotation hampers its progress and functional studies of the rice genome. In this study, we applied single-molecule long-read RNA sequencing (lrRNA_seq)-based proteogenomics to reveal the complexity of the rice transcriptome and its coding abilities. Surprisingly, approximately 60% of loci identified by lrRNA_seq are associated with natural antisense transcripts (NATs).

View Article and Find Full Text PDF

Background: Proline (Pro) and γ-aminobutyric acid (GABA) play important roles in plant development and stress tolerance. However, the molecular components responsible for the transport of these molecules in rice remain largely unknown.

Results: Here we identified OsProT1 and OsProT3 as functional transporters for Pro and GABA.

View Article and Find Full Text PDF